亚洲中文字幕一区精品自拍_国产精品VA在线观看无码_翁吻乳婷婷小玲21章_久久久久久久精品国产亚洲87

鈦鍛件鈦棒等鈦合金表面激光熔覆耐磨和自潤滑涂層的研究進展

發布時間: 2023-12-28 23:06:55    瀏覽次(ci)數:

前言

鈦合金(jin)因具有(you)輕質、比強度(du)高(gao)、耐(nai)腐蝕(shi)與(yu)生(sheng)物(wu)(wu)相容性(xing)好等特點,被廣泛應(ying)用(yong)于航(hang)空航(hang)天、海洋工程和(he)生(sheng)物(wu)(wu)醫學等領(ling)域[1-5]。在這些應(ying)用(yong)領(ling)域中,鈦合金(jin)不可避免(mian)地存(cun)在摩擦與(yu)磨損(sun)問題,鈦合金(jin)較差的耐(nai)磨性(xing)會嚴(yan)重影響其作為工作部件的可靠性(xing)與(yu)服役壽命(ming)。

表(biao)面(mian)(mian)改性技(ji)(ji)(ji)術是提(ti)高鈦(tai)合(he)(he)金耐磨(mo)(mo)性的主要(yao)方(fang)法,現有(you)表(biao)面(mian)(mian)改性技(ji)(ji)(ji)術主要(yao)包括物理氣(qi)(qi)相沉積(ji)(ji)[6]、化學氣(qi)(qi)相沉積(ji)(ji)[7]、噴涂(tu)[8]、滲氮[9]、滲碳[10]、微弧氧化[11]等,但(dan)是這(zhe)些(xie)技(ji)(ji)(ji)術通常存在涂(tu)層與(yu)基材(cai)結合(he)(he)力(li)差、涂(tu)層厚度較薄以及苛刻摩擦磨(mo)(mo)損條(tiao)件下(xia)涂(tu)層易剝落(luo)等問(wen)題[12,13]。而與(yu)以上技(ji)(ji)(ji)術相比,激光熔覆技(ji)(ji)(ji)術具有(you)制備涂(tu)層組織致密(mi)且厚度不(bu)受限制,涂(tu)層與(yu)基材(cai)結合(he)(he)強度高、不(bu)易剝落(luo)等優點,廣泛(fan)用于提(ti)高鈦(tai)合(he)(he)金表(biao)面(mian)(mian)的耐磨(mo)(mo)性。

采用激(ji)光熔(rong)(rong)覆(fu)技術提高(gao)鈦合(he)金(jin)表(biao)面(mian)(mian)耐(nai)(nai)磨性(xing)的主要方法(fa)是(shi)在鈦合(he)金(jin)表(biao)面(mian)(mian)制備(bei)耐(nai)(nai)磨和(he)自(zi)(zi)潤(run)滑(hua)涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)。在鈦合(he)金(jin)表(biao)面(mian)(mian)制備(bei)耐(nai)(nai)磨和(he)自(zi)(zi)潤(run)滑(hua)涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)的過程中,通過調整熔(rong)(rong)覆(fu)工(gong)藝(yi)參數,使(shi)得熔(rong)(rong)覆(fu)粉末在激(ji)光高(gao)溫(wen)作用下快(kuai)速熔(rong)(rong)化、凝固(gu)形成缺陷較少的涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng),因(yin)此,激(ji)光熔(rong)(rong)覆(fu)工(gong)藝(yi)是(shi)決定(ding)涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)耐(nai)(nai)磨性(xing)的重(zhong)要因(yin)素(su)[14]。除(chu)此之外(wai),涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)的組分也是(shi)影響涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)耐(nai)(nai)磨性(xing)的重(zhong)要因(yin)素(su)。耐(nai)(nai)磨涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)由(you)硬質(zhi)相(xiang)和(he)基(ji)體(ti)相(xiang)組成,自(zi)(zi)潤(run)滑(hua)涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)由(you)硬質(zhi)相(xiang)、基(ji)體(ti)相(xiang)和(he)自(zi)(zi)潤(run)滑(hua)相(xiang)組成。硬質(zhi)相(xiang)能(neng)(neng)(neng)夠提高(gao)涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)的硬度進而提高(gao)涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)耐(nai)(nai)磨性(xing);基(ji)體(ti)相(xiang)能(neng)(neng)(neng)夠提高(gao)涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)韌性(xing)與潤(run)濕性(xing)進而提高(gao)涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)的綜合(he)性(xing)能(neng)(neng)(neng);自(zi)(zi)潤(run)滑(hua)相(xiang)則能(neng)(neng)(neng)夠減小涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)摩(mo)擦系(xi)數進而提高(gao)涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)減磨性(xing)。因(yin)此本文綜述(shu)了(le)激(ji)光熔(rong)(rong)覆(fu)工(gong)藝(yi)和(he)涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)組分(硬質(zhi)相(xiang)、基(ji)體(ti)相(xiang)和(he)自(zi)(zi)潤(run)滑(hua)相(xiang))特征對涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)耐(nai)(nai)磨性(xing)的影響規律。

1、激光熔覆工藝對涂層耐磨性的影響

采用激光(guang)(guang)熔覆技術制備的耐(nai)磨(mo)和自潤滑涂(tu)層與基(ji)體的物理(li)性(xing)質(彈(dan)性(xing)模量(liang)、熱(re)膨(peng)脹系數(shu)、熔點等)存在較大(da)差異,因此涂(tu)層易出現裂紋、氣(qi)孔等缺(que)陷。合適的激光(guang)(guang)熔覆工藝可以減少涂(tu)層中的各種缺(que)陷,提高涂(tu)層的耐(nai)磨(mo)性(xing)。激光(guang)(guang)熔覆工藝包括熔覆工藝參(can)數(shu)和輔助(zhu)工藝,熔覆工藝參(can)數(shu)主(zhu)要包括激光(guang)(guang)功率、掃描速度、光(guang)(guang)斑直徑、比能量(liang)等參(can)數(shu)。

1.1激光功率

激(ji)(ji)光(guang)功(gong)率(lv)大小對(dui)涂(tu)層(ceng)(ceng)(ceng)宏觀形(xing)貌(mao)、缺陷(xian)(xian)、組織、硬度(du)有顯著的影響(xiang)[15-17]。崔愛永等[18]研究了(le)激(ji)(ji)光(guang)功(gong)率(lv)大小對(dui)涂(tu)層(ceng)(ceng)(ceng)宏觀形(xing)貌(mao)的影響(xiang)(見表1),由表1可(ke)知,涂(tu)層(ceng)(ceng)(ceng)的稀釋率(lv)、熔池的深度(du)隨著激(ji)(ji)光(guang)功(gong)率(lv)增大而增大,而涂(tu)層(ceng)(ceng)(ceng)的宏觀形(xing)貌(mao)基本不(bu)受激(ji)(ji)光(guang)功(gong)率(lv)大小的影響(xiang)。翁(weng)飛[19]研究了(le)激(ji)(ji)光(guang)功(gong)率(lv)對(dui)涂(tu)層(ceng)(ceng)(ceng)缺陷(xian)(xian)的影響(xiang),發現較(jiao)低的激(ji)(ji)光(guang)功(gong)率(lv)使(shi)得熔池中(zhong)的氣(qi)(qi)體來不(bu)及逸出形(xing)成氣(qi)(qi)孔(kong)缺陷(xian)(xian);較(jiao)高(gao)的激(ji)(ji)光(guang)功(gong)率(lv)使(shi)得熔覆(fu)材料充分熔融、氣(qi)(qi)孔(kong)缺陷(xian)(xian)減少。

b1.jpg

馬永[20]研究了(le)激(ji)光功(gong)(gong)率對涂層組(zu)(zu)織和硬(ying)度的影響,發現高(gao)激(ji)光功(gong)(gong)率使得(de)涂層組(zu)(zu)織致(zhi)密、分布(bu)均勻、硬(ying)度提高(gao)。通常情(qing)況下,激(ji)光功(gong)(gong)率大小的選擇原則是在保證(zheng)涂層形貌(mao)較為平整、涂層稀釋率低(di)于(yu)5%的情(qing)況下,盡可能提高(gao)激(ji)光功(gong)(gong)率[12]。

1.2掃描速度

掃(sao)(sao)描(miao)(miao)(miao)速(su)(su)(su)度(du)(du)(du)會(hui)影響(xiang)熔覆(fu)(fu)粉(fen)末(mo)(mo)的(de)(de)(de)(de)熔化狀(zhuang)態,進而影響(xiang)涂(tu)層(ceng)(ceng)的(de)(de)(de)(de)耐磨(mo)性(xing)。掃(sao)(sao)描(miao)(miao)(miao)速(su)(su)(su)度(du)(du)(du)較(jiao)低時,熔覆(fu)(fu)粉(fen)末(mo)(mo)能夠充(chong)分熔融;而掃(sao)(sao)描(miao)(miao)(miao)速(su)(su)(su)度(du)(du)(du)過(guo)低則(ze)會(hui)導致(zhi)熔覆(fu)(fu)粉(fen)末(mo)(mo)過(guo)燒、粉(fen)末(mo)(mo)中的(de)(de)(de)(de)合金元素蒸(zheng)發;掃(sao)(sao)描(miao)(miao)(miao)速(su)(su)(su)度(du)(du)(du)過(guo)高則(ze)會(hui)導致(zhi)熔覆(fu)(fu)粉(fen)末(mo)(mo)不能完全熔化[12,16,21]。Li等[22]研究(jiu)了(le)掃(sao)(sao)描(miao)(miao)(miao)速(su)(su)(su)度(du)(du)(du)對Ti+TiBCN熔覆(fu)(fu)粉(fen)末(mo)(mo)制備(bei)的(de)(de)(de)(de)涂(tu)層(ceng)(ceng)稀釋率(lv)、耐磨(mo)性(xing)的(de)(de)(de)(de)影響(xiang)規(gui)律,結果如圖1所示,隨(sui)著掃(sao)(sao)描(miao)(miao)(miao)速(su)(su)(su)度(du)(du)(du)的(de)(de)(de)(de)增加,涂(tu)層(ceng)(ceng)的(de)(de)(de)(de)稀釋率(lv)降低、顯微硬(ying)度(du)(du)(du)先增大(da)后減(jian)小(xiao),摩擦系(xi)數、磨(mo)損(sun)質(zhi)量損(sun)失和磨(mo)損(sun)體積(ji)先減(jian)小(xiao)后增大(da),當掃(sao)(sao)描(miao)(miao)(miao)速(su)(su)(su)度(du)(du)(du)為7mm/s時,涂(tu)層(ceng)(ceng)綜合性(xing)能最優(you)。而譚金花等[23]研究(jiu)了(le)掃(sao)(sao)描(miao)(miao)(miao)速(su)(su)(su)度(du)(du)(du)對TC4+Ni60+h-BN熔覆(fu)(fu)粉(fen)末(mo)(mo)制備(bei)的(de)(de)(de)(de)涂(tu)層(ceng)(ceng)的(de)(de)(de)(de)影響(xiang)規(gui)律,結果表(biao)明掃(sao)(sao)描(miao)(miao)(miao)速(su)(su)(su)度(du)(du)(du)為10mm/s的(de)(de)(de)(de)涂(tu)層(ceng)(ceng)綜合性(xing)能最優(you)。因此在不同的(de)(de)(de)(de)熔覆(fu)(fu)粉(fen)末(mo)(mo)體系(xi)中,最優(you)的(de)(de)(de)(de)掃(sao)(sao)描(miao)(miao)(miao)速(su)(su)(su)度(du)(du)(du)存(cun)在差異。

t1.jpg

1.3光斑直徑和比能量

光(guang)(guang)(guang)斑(ban)直(zhi)徑(jing)(jing)決定了(le)涂層(ceng)熔池寬(kuan)度(du)與(yu)光(guang)(guang)(guang)斑(ban)單位面積上的(de)能(neng)量輸(shu)入。大光(guang)(guang)(guang)斑(ban)直(zhi)徑(jing)(jing)可以增加(jia)熔池寬(kuan)度(du),但(dan)降(jiang)低了(le)能(neng)量輸(shu)入,而小光(guang)(guang)(guang)斑(ban)直(zhi)徑(jing)(jing)使得涂層(ceng)缺陷減少(shao)、組織(zhi)致密(mi),但(dan)會導致激光(guang)(guang)(guang)熔覆時(shi)間增加(jia),不利(li)于激光(guang)(guang)(guang)熔覆技術(shu)的(de)工業(ye)化應用(yong)[24,25]。

為了研究光斑直徑D、掃描速度v和激光功率P三者對涂層的共同作用效果,研究人員提出了比能量E的概念,比能量E表示涂層單位面積受到激光照射能量的大小(E=P/DV)[12]。Sui等[26]研究了比能量對Ti3Al復合TiN+Ti3AlN涂層的影響規律,結果表明比能量增加會提高涂層綜合性能,但涂層稀釋率也會增加;比能量減小則會導致涂層組織分布不均勻、缺陷增加;比能量為58.3J/mm2時,涂層氣孔、裂紋缺陷最少、耐磨性能最優。但是Liu等[27]研究了比能量對TiC+TiB2涂層的影響,結果表明比能量為45J/mm2的(de)涂(tu)層(ceng)耐磨性(xing)能(neng)最優。在不同的(de)熔(rong)(rong)覆材(cai)料體系中,熔(rong)(rong)覆材(cai)料的(de)類型、粉末尺(chi)寸存在差(cha)異,使得涂(tu)層(ceng)達到最佳性(xing)能(neng)所需(xu)的(de)能(neng)量(liang)不同,因此(ci)比能(neng)量(liang)只能(neng)在相似的(de)熔(rong)(rong)覆材(cai)料體系中作為(wei)參考。

1.4輔助工藝

激(ji)光(guang)熔(rong)覆(fu)的(de)(de)(de)輔助(zhu)工(gong)(gong)(gong)藝(yi)(yi)包括引(yin)入旋轉磁(ci)場、超(chao)(chao)聲(sheng)(sheng)振(zhen)動(dong)和(he)后熱處(chu)理(li)(li)等(deng)工(gong)(gong)(gong)藝(yi)(yi)。引(yin)入旋轉磁(ci)場可(ke)以(yi)減小(xiao)熔(rong)池深度(du)和(he)寬度(du),而對涂(tu)(tu)(tu)層(ceng)宏觀(guan)形(xing)貌(mao)、耐磨(mo)(mo)性(xing)的(de)(de)(de)影響(xiang)較小(xiao)[28]。合適的(de)(de)(de)超(chao)(chao)聲(sheng)(sheng)振(zhen)動(dong)功率可(ke)以(yi)顯著降低(di)涂(tu)(tu)(tu)層(ceng)的(de)(de)(de)晶粒(li)尺寸,王(wang)維等(deng)[29]研究發現2.2W的(de)(de)(de)超(chao)(chao)聲(sheng)(sheng)振(zhen)動(dong)使得涂(tu)(tu)(tu)層(ceng)宏觀(guan)形(xing)貌(mao)更加平整(zheng),相比無超(chao)(chao)聲(sheng)(sheng)振(zhen)動(dong)的(de)(de)(de)涂(tu)(tu)(tu)層(ceng),晶粒(li)尺寸減小(xiao)了(le)約(yue)42%。后熱處(chu)理(li)(li)工(gong)(gong)(gong)藝(yi)(yi)可(ke)降低(di)涂(tu)(tu)(tu)層(ceng)的(de)(de)(de)殘余應力,同(tong)時提高涂(tu)(tu)(tu)層(ceng)的(de)(de)(de)斷(duan)裂(lie)韌性(xing)[30-33]。但(dan)不(bu)同(tong)的(de)(de)(de)后熱處(chu)理(li)(li)工(gong)(gong)(gong)藝(yi)(yi)對涂(tu)(tu)(tu)層(ceng)耐磨(mo)(mo)性(xing)的(de)(de)(de)影響(xiang)存在(zai)差異。Li等(deng)[31]將激(ji)光(guang)熔(rong)覆(fu)制備(bei)(bei)好的(de)(de)(de)涂(tu)(tu)(tu)層(ceng)(主要由WC、W2C、α-Ti、Ti2Ni和(he)TiNi組成(cheng))進行熱處(chu)理(li)(li),在(zai)500℃下(xia)分別保溫(wen)1h和(he)2h,然后在(zai)空氣中冷卻,涂(tu)(tu)(tu)層(ceng)的(de)(de)(de)顯微硬(ying)度(du)、耐磨(mo)(mo)性(xing)略(lve)有降低(di)。而Chen等(deng)[32]將制備(bei)(bei)好的(de)(de)(de)鈦基復合TiC+TiB涂(tu)(tu)(tu)層(ceng)進行熱處(chu)理(li)(li),在(zai)不(bu)同(tong)的(de)(de)(de)溫(wen)度(du)(400℃、600℃和(he)800℃)下(xia)保溫(wen)3h,然后在(zai)空氣中冷卻,隨(sui)著熱處(chu)理(li)(li)溫(wen)度(du)升高,涂(tu)(tu)(tu)層(ceng)的(de)(de)(de)硬(ying)度(du)、耐磨(mo)(mo)性(xing)提高。

2、硬質相特征對涂層耐磨性的影響

鈦合(he)金表(biao)面(mian)激光(guang)熔(rong)覆制(zhi)(zhi)備的(de)(de)耐(nai)(nai)(nai)磨涂(tu)層(ceng)(ceng)通常(chang)由硬(ying)(ying)(ying)(ying)質(zhi)(zhi)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)與基體(ti)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)組成(cheng)。涂(tu)層(ceng)(ceng)的(de)(de)耐(nai)(nai)(nai)磨性(xing)主(zhu)要由硬(ying)(ying)(ying)(ying)質(zhi)(zhi)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)的(de)(de)含(han)量(liang)、特征和(he)形(xing)成(cheng)方(fang)(fang)式(shi)決定。硬(ying)(ying)(ying)(ying)質(zhi)(zhi)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)的(de)(de)含(han)量(liang)占比(bi)越高,涂(tu)層(ceng)(ceng)的(de)(de)耐(nai)(nai)(nai)磨性(xing)越好,但硬(ying)(ying)(ying)(ying)質(zhi)(zhi)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)含(han)量(liang)占比(bi)過高會(hui)導致涂(tu)層(ceng)(ceng)產生大面(mian)積裂紋,甚至剝落(luo)。在(zai)硬(ying)(ying)(ying)(ying)質(zhi)(zhi)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)含(han)量(liang)受到限制(zhi)(zhi)的(de)(de)情況下(xia),硬(ying)(ying)(ying)(ying)質(zhi)(zhi)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)的(de)(de)特征與形(xing)成(cheng)方(fang)(fang)式(shi)成(cheng)為(wei)決定涂(tu)層(ceng)(ceng)耐(nai)(nai)(nai)磨性(xing)的(de)(de)關鍵因(yin)素(su)[34-36]。硬(ying)(ying)(ying)(ying)質(zhi)(zhi)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)的(de)(de)形(xing)成(cheng)方(fang)(fang)式(shi)有在(zai)熔(rong)覆粉(fen)末中(zhong)直接添加硬(ying)(ying)(ying)(ying)質(zhi)(zhi)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)顆粒和(he)利用激光(guang)高溫原位(wei)生成(cheng)硬(ying)(ying)(ying)(ying)質(zhi)(zhi)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)2種方(fang)(fang)法。本文按照硬(ying)(ying)(ying)(ying)質(zhi)(zhi)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)形(xing)成(cheng)方(fang)(fang)式(shi)的(de)(de)不(bu)同,分別介紹了不(bu)同類型硬(ying)(ying)(ying)(ying)質(zhi)(zhi)相(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)(xiang)對涂(tu)層(ceng)(ceng)的(de)(de)影(ying)響情況。

2.1直接添加硬質相

直(zhi)接添加(jia)(jia)硬質(zhi)相(xiang)的(de)方(fang)法是直(zhi)接添加(jia)(jia)高(gao)(gao)(gao)熔(rong)(rong)(rong)點陶(tao)瓷(ci)相(xiang)作為(wei)熔(rong)(rong)(rong)覆(fu)粉末(mo),在激(ji)光(guang)熔(rong)(rong)(rong)覆(fu)過程(cheng)中采用(yong)較(jiao)小的(de)激(ji)光(guang)功率和較(jiao)高(gao)(gao)(gao)的(de)掃描速度來避免陶(tao)瓷(ci)相(xiang)大量分(fen)(fen)解,激(ji)光(guang)熔(rong)(rong)(rong)覆(fu)結(jie)束后(hou)未分(fen)(fen)解的(de)陶(tao)瓷(ci)相(xiang)作為(wei)涂(tu)(tu)層硬質(zhi)相(xiang),提(ti)高(gao)(gao)(gao)涂(tu)(tu)層耐磨(mo)性。常見的(de)高(gao)(gao)(gao)熔(rong)(rong)(rong)點陶(tao)瓷(ci)相(xiang)主要有c-BN(立方(fang)氮化硼)[21,37]、WC[35]等(deng)。Samar等(deng)[35]選(xuan)擇WC+NiCrBSi粉末(mo)進行激(ji)光(guang)熔(rong)(rong)(rong)覆(fu),如圖2所示,涂(tu)(tu)層中WC顆粒(li)的(de)顯微硬度高(gao)(gao)(gao)達3338HV,顯著提(ti)高(gao)(gao)(gao)了(le)(le)(le)涂(tu)(tu)層的(de)耐磨(mo)性,但是WC顆粒(li)邊緣受激(ji)光(guang)高(gao)(gao)(gao)溫影響分(fen)(fen)解產生了(le)(le)(le)許多(duo)小顆粒(li),增大了(le)(le)(le)涂(tu)(tu)層開裂(lie)傾向。

t2.jpg

Fu等[38]采用(yong)(yong)包覆(fu)的方法改善了直(zhi)接添(tian)加(jia)硬質(zhi)相在激光(guang)高溫作(zuo)(zuo)用(yong)(yong)下容易分解產生(sheng)裂(lie)紋的問題。如圖(tu)3所示,無包覆(fu)的c-BN顆粒(li)在激光(guang)高溫作(zuo)(zuo)用(yong)(yong)下分解產生(sheng)裂(lie)紋,在干摩(mo)擦試驗過程中(zhong),裂(lie)紋導致(zhi)部(bu)分c-BN顆粒(li)破裂(lie)形成磨粒(li)磨損,涂(tu)層出現窄而(er)深(shen)的磨痕(hen)。而(er)采用(yong)(yong)Ni包覆(fu)c-BN顆粒(li)的熔覆(fu)粉末(mo)經過激光(guang)作(zuo)(zuo)用(yong)(yong)后,c-BN顆粒(li)幾乎(hu)無裂(lie)紋產生(sheng),涂(tu)層的耐磨性顯著(zhu)提升[38]。

t3.jpg

2.2原位生成硼(peng)化物陶瓷相

直接添加(jia)硬(ying)(ying)質(zhi)相(xiang)(xiang)顆粒的方法(fa)易產(chan)(chan)生(sheng)裂紋,對(dui)硬(ying)(ying)質(zhi)相(xiang)(xiang)顆粒增(zeng)加(jia)包覆(fu)層雖然會減少(shao)裂紋的產(chan)(chan)生(sheng),但是(shi)存在可(ke)包覆(fu)材料種類少(shao)、成(cheng)本增(zeng)加(jia)的問題。而采用原位(wei)(wei)生(sheng)成(cheng)的方法(fa)則不存在上述問題,原位(wei)(wei)生(sheng)成(cheng)硬(ying)(ying)質(zhi)相(xiang)(xiang)是(shi)利用激(ji)光高溫作用使得熔(rong)覆(fu)粉末在熔(rong)化狀態(tai)發生(sheng)原位(wei)(wei)反應生(sheng)成(cheng)硬(ying)(ying)質(zhi)相(xiang)(xiang)。原位(wei)(wei)生(sheng)成(cheng)的硬(ying)(ying)質(zhi)相(xiang)(xiang)主(zhu)要有硼化物陶(tao)瓷(ci)相(xiang)(xiang)、碳(tan)化物陶(tao)瓷(ci)相(xiang)(xiang)、氧化物陶(tao)瓷(ci)相(xiang)(xiang)等。

硼化(hua)物陶瓷導熱率(lv)較(jiao)高(gao)、高(gao)溫穩定性好,同時(shi)具(ju)有高(gao)硬耐(nai)磨(mo)(mo)的(de)特點[36]。采用激光熔(rong)覆技術制(zhi)備的(de)耐(nai)磨(mo)(mo)涂(tu)層(ceng)中硼化(hua)物陶瓷相(xiang)主(zhu)(zhu)要為(wei)TiB2、TiB陶瓷相(xiang)[39,40]。生(sheng)成TiB2、TiB陶瓷相(xiang)的(de)反(fan)應(ying)(ying)吉布斯自(zi)由能和反(fan)應(ying)(ying)生(sheng)成焓都(dou)為(wei)負值(zhi)且都(dou)為(wei)放熱反(fan)應(ying)(ying),因此(ci)(ci)TiB2、TiB陶瓷相(xiang)在(zai)涂(tu)層(ceng)中一般會(hui)同時(shi)出現,此(ci)(ci)外生(sheng)成TiB反(fan)應(ying)(ying)的(de)吉布斯自(zi)由能更低(di),在(zai)反(fan)應(ying)(ying)充分的(de)情(qing)況下,生(sheng)成TiB的(de)反(fan)應(ying)(ying)更容易發生(sheng)[41-44]。如圖4所示,TiB相(xiang)形(xing)(xing)貌趨向(xiang)六(liu)邊形(xing)(xing)針狀(zhuang),TiB2相(xiang)形(xing)(xing)貌趨向(xiang)六(liu)邊形(xing)(xing)板塊狀(zhuang)[41]。劉頔等[45]制(zhi)備了(le)以TiB、TiN為(wei)主(zhu)(zhu)要硬質相(xiang)的(de)耐(nai)磨(mo)(mo)涂(tu)層(ceng),干摩擦試驗表明TiB、TiN具(ju)有釘扎強化(hua)作(zuo)用而顯著抑(yi)制(zhi)了(le)硬質相(xiang)顆粒(li)的(de)剝(bo)落(luo),提高(gao)了(le)涂(tu)層(ceng)耐(nai)磨(mo)(mo)性。

t4.jpg

2.3原(yuan)位生成碳化(hua)物陶(tao)瓷相

原位生成碳(tan)(tan)化物(wu)陶(tao)瓷相(xiang)主(zhu)要(yao)為(wei)(wei)(Ti,W)C1-x[46]、TiCx[47]等。在熔覆涂(tu)(tu)(tu)層(ceng)(ceng)的(de)(de)(de)形(xing)成過程(cheng)中(zhong),當熔池中(zhong)含(han)有鈦(tai)(tai)、碳(tan)(tan)和(he)(he)鎢元素(su)(su)時(shi)(shi),碳(tan)(tan)元素(su)(su)優先(xian)與鈦(tai)(tai)元素(su)(su)反應(ying)(ying)生成TiCx,當碳(tan)(tan)元素(su)(su)過飽和(he)(he)時(shi)(shi)才(cai)(cai)會(hui)和(he)(he)鎢元素(su)(su)反應(ying)(ying)生成WC,然后WC和(he)(he)TiCx反應(ying)(ying)生成單一固(gu)溶體(Ti,W)C1-x,因(yin)此(Ti,W)C1-x在涂(tu)(tu)(tu)層(ceng)(ceng)中(zhong)的(de)(de)(de)含(han)量(liang)極低(di),對涂(tu)(tu)(tu)層(ceng)(ceng)耐磨(mo)性的(de)(de)(de)影(ying)(ying)響較(jiao)小[46,48]。TiCx陶(tao)瓷硬度高(gao)(gao)、彈性模量(liang)高(gao)(gao)、熱力(li)學(xue)參數和(he)(he)物(wu)理參數與鈦(tai)(tai)合金相(xiang)近,因(yin)此是激光熔覆制(zhi)備(bei)耐磨(mo)涂(tu)(tu)(tu)層(ceng)(ceng)中(zhong)應(ying)(ying)用較(jiao)多的(de)(de)(de)硬質相(xiang)[46]。TiCx是非定計量(liang)比(bi)化合物(wu),受激光熔覆工藝快速(su)熔化快速(su)凝固(gu)特點的(de)(de)(de)影(ying)(ying)響,TiCx形(xing)貌(mao)各(ge)異,如圖(tu)5所(suo)示,TiCx有枝晶狀(zhuang)、花(hua)瓣狀(zhuang)、球形(xing)或不規(gui)則(ze)形(xing)狀(zhuang)等,但不同形(xing)貌(mao)的(de)(de)(de)TiCx對涂(tu)(tu)(tu)層(ceng)(ceng)耐磨(mo)性的(de)(de)(de)影(ying)(ying)響還(huan)缺乏深入的(de)(de)(de)研究[49]。Zhao等[50]制(zhi)備(bei)的(de)(de)(de)以TiCx為(wei)(wei)硬質相(xiang)的(de)(de)(de)耐磨(mo)涂(tu)(tu)(tu)層(ceng)(ceng)顯微硬度最高(gao)(gao)為(wei)(wei)540HV。而馬(ma)永[20]制(zhi)備(bei)的(de)(de)(de)以TiB+TiC為(wei)(wei)硬質相(xiang)的(de)(de)(de)耐磨(mo)涂(tu)(tu)(tu)層(ceng)(ceng)顯微硬度最高(gao)(gao)為(wei)(wei)1404.6HV,磨(mo)損量(liang)相(xiang)比(bi)基(ji)體減少(shao)了66.67%。TiCx陶(tao)瓷作為(wei)(wei)涂(tu)(tu)(tu)層(ceng)(ceng)硬質相(xiang)時(shi)(shi),需要(yao)額(e)外(wai)添加其他種類的(de)(de)(de)硬質相(xiang)才(cai)(cai)會(hui)顯著提高(gao)(gao)涂(tu)(tu)(tu)層(ceng)(ceng)的(de)(de)(de)耐磨(mo)性。

t5.jpg

2.4原位生成氧化物陶瓷相(xiang)

由于氧化物與液態金屬的(de)(de)界面能(neng)較(jiao)大(da),導致大(da)多數氧化物陶(tao)瓷(ci)(ci)相在(zai)涂層中的(de)(de)潤濕性較(jiao)差,因(yin)此激光熔覆原位(wei)生成氧化物陶(tao)瓷(ci)(ci)的(de)(de)研究(jiu)較(jiao)少(shao),只(zhi)有(you)一些(xie)學者(zhe)研究(jiu)了(le)(le)ZrO2陶(tao)瓷(ci)(ci)、Al2O3陶(tao)瓷(ci)(ci)[51-53]。ZrO2陶(tao)瓷(ci)(ci)除(chu)了(le)(le)具(ju)有(you)高強(qiang)度、高硬度外,還具(ju)有(you)消除(chu)殘余應力的(de)(de)作(zuo)用[51,54]。羅(luo)雅等[51]在(zai)TA15合金表面制備的(de)(de)TiNi+Ti2Ni復(fu)合ZrO2涂層,涂層顯微硬度最高達到1070HV,磨損(sun)率遠低于基體。

此外,超(chao)聲振動的輔助(zhu)工藝(yi)可降低氧(yang)(yang)化(hua)物(wu)潤(run)濕(shi)性差帶(dai)來(lai)的不利影響。Wang等(deng)[52]在激(ji)光熔覆過程中增加了超(chao)聲振動的輔助(zhu)工藝(yi),制備了含Al2O3、W2(C,O)氧(yang)(yang)化(hua)物(wu)陶瓷相的涂層,超(chao)聲振動使得涂層的晶粒細化(hua),氧(yang)(yang)化(hua)物(wu)硬(ying)質(zhi)相Al2O3、W2(C,O)在涂層中的潤(run)濕(shi)性有所(suo)改善,涂層平均(jun)顯微硬(ying)度(du)達到1029.4HV,耐磨性能優異。

3、基體相特征對涂層耐磨性的影響

在激光熔覆技(ji)術制備的(de)耐(nai)磨涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)中,含量占比最高(gao)的(de)相(xiang)(xiang)(xiang)為基(ji)(ji)(ji)體相(xiang)(xiang)(xiang)。基(ji)(ji)(ji)體相(xiang)(xiang)(xiang)能(neng)夠提高(gao)涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)的(de)韌性和潤濕性,避免涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)產生過多裂紋、氣孔等缺陷。耐(nai)磨涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)的(de)基(ji)(ji)(ji)體相(xiang)(xiang)(xiang)主(zhu)要由鈦基(ji)(ji)(ji)、鎳基(ji)(ji)(ji)、鈷基(ji)(ji)(ji)、鋁(lv)基(ji)(ji)(ji)及其相(xiang)(xiang)(xiang)互復(fu)合(he)(he)的(de)材料(liao)體系形成,因(yin)此按照涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)基(ji)(ji)(ji)體相(xiang)(xiang)(xiang)類型,把耐(nai)磨涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)分為金(jin)屬(shu)基(ji)(ji)(ji)復(fu)合(he)(he)陶(tao)瓷涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)與金(jin)屬(shu)間化合(he)(he)物復(fu)合(he)(he)陶(tao)瓷涂(tu)(tu)層(ceng)(ceng)(ceng)(ceng)。

3.1金屬基體相

金屬基(ji)(ji)復(fu)(fu)合(he)(he)陶(tao)(tao)(tao)瓷涂(tu)層(ceng)(ceng)的基(ji)(ji)體(ti)相(xiang)(xiang)(xiang)由一種含(han)量(liang)占比極高(gao)的金屬元素(su)(su)形成(cheng)。常(chang)(chang)見(jian)的金屬基(ji)(ji)體(ti)相(xiang)(xiang)(xiang)包(bao)括鈦(tai)基(ji)(ji)、鎳基(ji)(ji)、鈷基(ji)(ji)等,因此金屬基(ji)(ji)復(fu)(fu)合(he)(he)陶(tao)(tao)(tao)瓷涂(tu)層(ceng)(ceng)又可分(fen)為(wei)鈦(tai)基(ji)(ji)、鎳基(ji)(ji)、鈷基(ji)(ji)復(fu)(fu)合(he)(he)陶(tao)(tao)(tao)瓷涂(tu)層(ceng)(ceng)。鈦(tai)基(ji)(ji)復(fu)(fu)合(he)(he)陶(tao)(tao)(tao)瓷涂(tu)層(ceng)(ceng)的基(ji)(ji)體(ti)相(xiang)(xiang)(xiang)與基(ji)(ji)材(cai)(cai)的物理性(xing)質類似,所(suo)以能夠(gou)顯著(zhu)減少涂(tu)層(ceng)(ceng)的各種缺陷,同時(shi)具有較好的潤濕性(xing)[55-57]。常(chang)(chang)見(jian)的鈦(tai)基(ji)(ji)體(ti)相(xiang)(xiang)(xiang)由鈦(tai)粉在激(ji)光熔覆過程(cheng)中形成(cheng),林沛玲等[58]選擇(ze)Ti+B粉末(mo)制備(bei)了(le)鈦(tai)基(ji)(ji)復(fu)(fu)合(he)(he)TiB陶(tao)(tao)(tao)瓷涂(tu)層(ceng)(ceng),顯微(wei)(wei)硬度偏(pian)低(650~770HV)。而Zhao等[13,59]、Lu等[60]制備(bei)的鈦(tai)基(ji)(ji)復(fu)(fu)合(he)(he)TiOx涂(tu)層(ceng)(ceng)基(ji)(ji)體(ti)相(xiang)(xiang)(xiang)由TiO2粉末(mo)形成(cheng),如圖6所(suo)示,涂(tu)層(ceng)(ceng)組(zu)織致密、分(fen)布均(jun)勻,基(ji)(ji)材(cai)(cai)與涂(tu)層(ceng)(ceng)界(jie)面(mian)無裂紋,基(ji)(ji)材(cai)(cai)中的鋁(lv)元素(su)(su)和釩元素(su)(su)擴(kuo)散(san)到了(le)涂(tu)層(ceng)(ceng),表明涂(tu)層(ceng)(ceng)與基(ji)(ji)材(cai)(cai)實現(xian)了(le)良好的冶金結(jie)合(he)(he),硬質相(xiang)(xiang)(xiang)TiOx使得涂(tu)層(ceng)(ceng)平均(jun)顯微(wei)(wei)硬度達(da)到了(le)1583HV1N,涂(tu)層(ceng)(ceng)磨損(sun)率僅是基(ji)(ji)體(ti)磨損(sun)率0.1倍。

t6.jpg

鎳基(ji)(ji)復合(he)陶(tao)(tao)瓷(ci)涂(tu)層的(de)(de)(de)(de)基(ji)(ji)體相(xiang)由鎳基(ji)(ji)自熔(rong)性(xing)(xing)合(he)金粉末(mo)形成(cheng)(cheng)。用于激光熔(rong)覆的(de)(de)(de)(de)鎳基(ji)(ji)自熔(rong)性(xing)(xing)合(he)金粉末(mo)主要有F101鎳基(ji)(ji)合(he)金、Ni60、Ni45A、NiCrBSi等粉末(mo)[36,61-64],其化學(xue)元素(su)組(zu)成(cheng)(cheng)如表2所示。鎳基(ji)(ji)自熔(rong)性(xing)(xing)合(he)金粉末(mo)含有硼(peng)(peng)、硅(gui)(gui)等元素(su),在(zai)激光熔(rong)覆過(guo)程(cheng)中具有脫氧作用,而(er)提高(gao)涂(tu)層的(de)(de)(de)(de)潤(run)濕性(xing)(xing)[36]。鎳基(ji)(ji)復合(he)陶(tao)(tao)瓷(ci)涂(tu)層的(de)(de)(de)(de)基(ji)(ji)體相(xiang)由γ-Ni組(zu)成(cheng)(cheng),γ-Ni能夠(gou)與(yu)硅(gui)(gui)元素(su)、鉻元素(su)、硼(peng)(peng)化物形成(cheng)(cheng)網格狀的(de)(de)(de)(de)枝晶間共(gong)晶組(zu)織而(er)顯(xian)著提高(gao)了涂(tu)層的(de)(de)(de)(de)耐(nai)磨(mo)性(xing)(xing)[65,66]。Samar等[35]選擇WC+NiCrBSi粉末(mo)制備的(de)(de)(de)(de)鎳基(ji)(ji)復合(he)WC+W2C涂(tu)層,平均顯(xian)微硬(ying)度達到了1384HV1N。但(dan)鎳基(ji)(ji)復合(he)陶(tao)(tao)瓷(ci)涂(tu)層中同時存在(zai)少量(liang)(liang)(liang)的(de)(de)(de)(de)金屬間化合(he)物相(xiang)TiNi,添加(jia)適量(liang)(liang)(liang)稀土(tu)元素(su)則能夠(gou)降(jiang)低涂(tu)層中TiNi相(xiang)的(de)(de)(de)(de)含量(liang)(liang)(liang),提高(gao)α-Ti相(xiang)的(de)(de)(de)(de)含量(liang)(liang)(liang),降(jiang)低涂(tu)層界面的(de)(de)(de)(de)開(kai)裂傾向[61,62]。

b2.jpg

鈷基(ji)(ji)(ji)復(fu)合(he)(he)陶(tao)瓷(ci)涂層(ceng)的(de)基(ji)(ji)(ji)體(ti)相由鈷基(ji)(ji)(ji)自(zi)熔性合(he)(he)金(jin)粉末形成。用于激(ji)光熔覆的(de)鈷基(ji)(ji)(ji)自(zi)熔性合(he)(he)金(jin)粉末價格較(jiao)高(gao),主要(yao)有Co42、Co-01等合(he)(he)金(jin)粉末,其化學成分如表3所示[40,67]。鈷基(ji)(ji)(ji)復(fu)合(he)(he)陶(tao)瓷(ci)涂層(ceng)的(de)基(ji)(ji)(ji)體(ti)相主要(yao)為(wei)γ-Ni/Co固溶體(ti)和少(shao)量的(de)金(jin)屬間化合(he)(he)物CoTi、CoTi2和NiTi[68,69]。γ-Ni/Co固溶體(ti)、CoTi、CoTi2和NiTi脆性高(gao),容(rong)易導致涂層(ceng)出現(xian)裂紋,同時提高(gao)了涂層(ceng)在干(gan)摩擦過程(cheng)中出現(xian)開裂的(de)概率,降低了涂層(ceng)的(de)耐磨性[70-74]。

b3.jpg

Weng等(deng)[41,68,69]為(wei)解決鈷基(ji)體相的(de)(de)脆(cui)性(xing)問題(ti),采用了添加稀(xi)土(tu)元素的(de)(de)方(fang)法,分別選(xuan)擇Co42+B4C+SiC+Y2O3粉(fen)末、Co42+B4C+CeO2粉(fen)末、Co42+TiN粉(fen)末制備(bei)耐(nai)(nai)磨(mo)涂(tu)(tu)(tu)層(ceng)(ceng)(ceng),結果(guo)表明3種涂(tu)(tu)(tu)層(ceng)(ceng)(ceng)都與基(ji)體為(wei)冶金(jin)(jin)結合(he)方(fang)式,涂(tu)(tu)(tu)層(ceng)(ceng)(ceng)中少量(liang)(liang)的(de)(de)金(jin)(jin)屬間化合(he)物(wu)不會導致涂(tu)(tu)(tu)層(ceng)(ceng)(ceng)與基(ji)材的(de)(de)界面出現裂紋(wen),并且通(tong)過添加適量(liang)(liang)稀(xi)土(tu)元素Y2O3和CeO2而(er)細化涂(tu)(tu)(tu)層(ceng)(ceng)(ceng)晶(jing)粒、顯著減小涂(tu)(tu)(tu)層(ceng)(ceng)(ceng)內的(de)(de)微裂紋(wen)數(shu)量(liang)(liang),因此含稀(xi)土(tu)元素的(de)(de)涂(tu)(tu)(tu)層(ceng)(ceng)(ceng)耐(nai)(nai)磨(mo)性(xing)能提高。

3.2金(jin)屬(shu)間化合物基體相

金(jin)屬(shu)(shu)間化(hua)合(he)物(wu)復合(he)陶瓷(ci)涂(tu)層(ceng)(ceng)的基(ji)(ji)(ji)(ji)體(ti)相(xiang)(xiang)為金(jin)屬(shu)(shu)間化(hua)合(he)物(wu)相(xiang)(xiang),這些(xie)基(ji)(ji)(ji)(ji)體(ti)相(xiang)(xiang)主要(yao)包括Ti-Al基(ji)(ji)(ji)(ji)、Ti-Ni基(ji)(ji)(ji)(ji)、Co-Ni基(ji)(ji)(ji)(ji)、Ni-Al基(ji)(ji)(ji)(ji),因此(ci)把金(jin)屬(shu)(shu)間化(hua)合(he)物(wu)復合(he)陶瓷(ci)涂(tu)層(ceng)(ceng)分為Ti-Al基(ji)(ji)(ji)(ji)、Ti-Ni基(ji)(ji)(ji)(ji)、Co-Ni基(ji)(ji)(ji)(ji)金(jin)屬(shu)(shu)間化(hua)合(he)物(wu)復合(he)陶瓷(ci)涂(tu)層(ceng)(ceng)。

Ti-Al金(jin)屬間(jian)(jian)化(hua)(hua)(hua)合(he)(he)物(wu)復(fu)合(he)(he)陶瓷涂(tu)層的(de)(de)(de)基體相(xiang)為(wei)Ti3Al金(jin)屬間(jian)(jian)化(hua)(hua)(hua)合(he)(he)物(wu),Ti3Al金(jin)屬間(jian)(jian)化(hua)(hua)(hua)合(he)(he)物(wu)具有低密度、高彈性(xing)模(mo)量、高屈服強度、良(liang)好的(de)(de)(de)導熱性(xing)和在(zai)高溫(wen)下(xia)形(xing)成(cheng)致密氧化(hua)(hua)(hua)膜提高抗氧化(hua)(hua)(hua)性(xing)等(deng)(deng)優(you)點,但(dan)(dan)也存(cun)在(zai)韌性(xing)差、室溫(wen)延展性(xing)差、對微(wei)裂紋敏感的(de)(de)(de)缺點[75-77]。Ti-Al金(jin)屬間(jian)(jian)化(hua)(hua)(hua)合(he)(he)物(wu)的(de)(de)(de)優(you)點使得(de)涂(tu)層具有較高的(de)(de)(de)硬度與耐(nai)磨性(xing),但(dan)(dan)韌性(xing)差的(de)(de)(de)Ti-Al金(jin)屬間(jian)(jian)化(hua)(hua)(hua)合(he)(he)物(wu)使得(de)涂(tu)層不(bu)可避免地存(cun)在(zai)裂紋,即使在(zai)熔覆(fu)粉(fen)(fen)末(mo)(mo)中(zhong)添加適量稀土元素也難以完全消(xiao)除,如Li等(deng)(deng)[78]在(zai)熔覆(fu)粉(fen)(fen)末(mo)(mo)中(zhong)添加Y2O3,成(cheng)功制(zhi)備(bei)了Ti3Al金(jin)屬間(jian)(jian)化(hua)(hua)(hua)合(he)(he)物(wu)復(fu)合(he)(he)陶瓷涂(tu)層,顯微(wei)硬度在(zai)1250~1400HV2N之(zhi)間(jian)(jian),但(dan)(dan)涂(tu)層依然(ran)存(cun)在(zai)許多微(wei)觀裂紋。

Ti-Ni基(ji)金(jin)屬間(jian)化合物(wu)復(fu)合陶瓷涂(tu)層(ceng)(ceng)的(de)基(ji)體相為(wei)(wei)TiNi、Ti2Ni相,TiNi、Ti2Ni金(jin)屬間(jian)化合物(wu)具有(you)較(jiao)好(hao)的(de)硬度與(yu)(yu)(yu)耐磨性[79]。當(dang)熔覆粉末(mo)中Ti含量較(jiao)多(duo)時,涂(tu)層(ceng)(ceng)基(ji)體相為(wei)(wei)枝晶狀Ti2Ni,當(dang)Ni含量較(jiao)多(duo)時,涂(tu)層(ceng)(ceng)基(ji)體相為(wei)(wei)TiNi[80]。TiNi和Ti2Ni與(yu)(yu)(yu)其他金(jin)屬間(jian)化合物(wu)相比(bi),并未表(biao)現出明顯(xian)的(de)脆性,以TiNi和Ti2Ni物(wu)相為(wei)(wei)主的(de)涂(tu)層(ceng)(ceng)無(wu)明顯(xian)裂紋(wen)存在(zai),組織較(jiao)為(wei)(wei)致密(mi),涂(tu)層(ceng)(ceng)與(yu)(yu)(yu)基(ji)體結合良(liang)好(hao),但(dan)與(yu)(yu)(yu)Ti-Al金(jin)屬間(jian)化合物(wu)復(fu)合陶瓷涂(tu)層(ceng)(ceng)相比(bi),涂(tu)層(ceng)(ceng)硬度較(jiao)低(580~900HV)[34,80]。

此外還有(you)(you)研究較少的Co-Ni、Ni-Al金屬間(jian)化(hua)合物(wu)(wu)基(ji)(ji)體相。Co-Ni金屬間(jian)化(hua)合物(wu)(wu)基(ji)(ji)體相在形成(cheng)過程中會同(tong)時生(sheng)成(cheng)與(yu)(yu)基(ji)(ji)材物(wu)(wu)理物(wu)(wu)理性(xing)(xing)(xing)質、熱力學性(xing)(xing)(xing)質差異較大Co-Ti相,導(dao)致涂層和(he)基(ji)(ji)材的界面處產生(sheng)裂紋[81]。Ni-Al基(ji)(ji)金屬間(jian)化(hua)合物(wu)(wu)基(ji)(ji)體相具有(you)(you)高溫(wen)抗氧化(hua)與(yu)(yu)耐磨(mo)的優(you)點(dian),但存在溫(wen)室脆性(xing)(xing)(xing)大的缺點(dian)[82]。

3.3不同基(ji)體相形成的涂層耐磨性能對比

由(you)于不(bu)同學者在測試涂(tu)層耐(nai)(nai)磨(mo)(mo)性(xing)(xing)能(neng)時(shi)采用(yong)了不(bu)同的摩(mo)擦(ca)(ca)試驗條件(摩(mo)擦(ca)(ca)方(fang)式(shi)、摩(mo)擦(ca)(ca)副(fu)材質、載荷(he)、摩(mo)擦(ca)(ca)時(shi)間等),因(yin)此他們(men)制備的耐(nai)(nai)磨(mo)(mo)涂(tu)層無法直接利(li)用(yong)磨(mo)(mo)損率、摩(mo)擦(ca)(ca)系數(shu)等試驗結果進行(xing)(xing)比較。而(er)顯微(wei)(wei)硬度(du)在一定程度(du)上可反映涂(tu)層的耐(nai)(nai)磨(mo)(mo)性(xing)(xing)能(neng),因(yin)此對不(bu)同種(zhong)類耐(nai)(nai)磨(mo)(mo)涂(tu)層的顯微(wei)(wei)硬度(du)進行(xing)(xing)了整理總結,如表4所示。

b4.jpg

4、自潤滑相特征對涂層耐磨性的影響

采用激光(guang)熔覆技術制(zhi)備(bei)的自(zi)潤(run)滑(hua)涂(tu)層(ceng)(ceng)以耐磨(mo)涂(tu)層(ceng)(ceng)的組(zu)分(fen)為基礎并增加了(le)自(zi)潤(run)滑(hua)相,因(yin)此(ci)與耐磨(mo)涂(tu)層(ceng)(ceng)相比,自(zi)潤(run)滑(hua)涂(tu)層(ceng)(ceng)的摩擦系數更(geng)低(di)。

4.1形成(cheng)自(zi)潤滑(hua)相(xiang)的材(cai)料

采用激(ji)光(guang)熔(rong)覆(fu)技術制備的(de)(de)自潤(run)(run)(run)(run)滑涂層(ceng)中(zhong)(zhong),一(yi)些常見的(de)(de)固(gu)體(ti)潤(run)(run)(run)(run)滑材料用于在(zai)激(ji)光(guang)熔(rong)覆(fu)過程中(zhong)(zhong)形(xing)成(cheng)自潤(run)(run)(run)(run)滑相(xiang)(xiang),主要包括石墨烯(xi)[84]、六方(fang)(fang)氮化(hua)(hua)硼(h-BN)[66]和(he)(he)各種硫化(hua)(hua)物(wu)[85,86]。石墨烯(xi)作為(wei)新型(xing)二維材料具有(you)強度高、韌性(xing)與自潤(run)(run)(run)(run)滑性(xing)好的(de)(de)特(te)點[87,88]。h-BN是具有(you)層(ceng)狀結構的(de)(de)六方(fang)(fang)晶系,層(ceng)與層(ceng)之(zhi)間由范德華鍵(jian)相(xiang)(xiang)連(lian),因(yin)此是良好的(de)(de)固(gu)體(ti)潤(run)(run)(run)(run)滑材料[66,89]。各種硫化(hua)(hua)物(wu)如MoS2、WS2、TiS、Ti2SC屬于層(ceng)狀結構、層(ceng)與層(ceng)之(zhi)間容(rong)易發生(sheng)(sheng)剪(jian)切滑移(yi),在(zai)中(zhong)(zhong)低(di)溫(wen)干摩擦條件下形(xing)成(cheng)轉移(yi)膜而具有(you)自潤(run)(run)(run)(run)滑效果[85,86]。但上述固(gu)體(ti)潤(run)(run)(run)(run)滑材料作為(wei)熔(rong)覆(fu)粉末都存在(zai)潤(run)(run)(run)(run)濕性(xing)差和(he)(he)在(zai)激(ji)光(guang)的(de)(de)高溫(wen)作用下容(rong)易分解的(de)(de)問題,因(yin)此自潤(run)(run)(run)(run)滑相(xiang)(xiang)在(zai)涂層(ceng)中(zhong)(zhong)的(de)(de)含量較低(di)[85,87-89]。針對固(gu)體(ti)潤(run)(run)(run)(run)滑材料潤(run)(run)(run)(run)濕性(xing)差和(he)(he)易分解的(de)(de)問題,主要有(you)在(zai)熔(rong)覆(fu)粉末中(zhong)(zhong)直接添(tian)加固(gu)體(ti)潤(run)(run)(run)(run)滑材料形(xing)成(cheng)自潤(run)(run)(run)(run)滑相(xiang)(xiang)和(he)(he)利用激(ji)光(guang)高溫(wen)原位(wei)生(sheng)(sheng)成(cheng)自潤(run)(run)(run)(run)滑相(xiang)(xiang)2種解決方(fang)(fang)法。

4.2直接添加自潤(run)滑相

在熔(rong)覆粉末(mo)中(zhong)直(zhi)接添(tian)加固體(ti)潤(run)滑(hua)(hua)材(cai)料需要采用低激(ji)(ji)光(guang)功率與(yu)(yu)(yu)高掃(sao)描速度(du)的熔(rong)覆工藝(yi)參數,避免固體(ti)潤(run)滑(hua)(hua)材(cai)料在激(ji)(ji)光(guang)熔(rong)覆過程(cheng)中(zhong)完(wan)全分解(jie)。石(shi)皋蓮等(deng)(deng)(deng)[66]研(yan)究了(le)Ni60+h-BN粉末(mo)激(ji)(ji)光(guang)熔(rong)覆形(xing)(xing)成(cheng)的自潤(run)滑(hua)(hua)涂(tu)(tu)層(ceng),未(wei)分解(jie)的h-BN作(zuo)為自潤(run)滑(hua)(hua)相(xiang),在高溫干(gan)摩(mo)(mo)擦(ca)試驗條件下,h-BN顆粒軟化并鋪展形(xing)(xing)成(cheng)潤(run)滑(hua)(hua)轉移膜,磨損量(liang)相(xiang)比(bi)Ni60粉末(mo)形(xing)(xing)成(cheng)的涂(tu)(tu)層(ceng)有明顯減少(shao)。Zhao等(deng)(deng)(deng)[50]、Zhang等(deng)(deng)(deng)[84]選(xuan)擇鈦(tai)+石(shi)墨(mo)烯(xi)粉末(mo)在TC4合(he)金表(biao)面(mian)制備自潤(run)滑(hua)(hua)涂(tu)(tu)層(ceng),在激(ji)(ji)光(guang)熔(rong)覆過程(cheng)中(zhong),大部(bu)分石(shi)墨(mo)烯(xi)與(yu)(yu)(yu)鈦(tai)元素反應生(sheng)成(cheng)了(le)TiC硬質相(xiang),少(shao)量(liang)石(shi)墨(mo)烯(xi)在高溫下轉化為石(shi)墨(mo),少(shao)量(liang)石(shi)墨(mo)與(yu)(yu)(yu)未(wei)分解(jie)的石(shi)墨(mo)烯(xi)組成(cheng)了(le)自潤(run)滑(hua)(hua)相(xiang)。在干(gan)摩(mo)(mo)擦(ca)試驗中(zhong),自潤(run)滑(hua)(hua)相(xiang)與(yu)(yu)(yu)涂(tu)(tu)層(ceng)表(biao)面(mian)硬質相(xiang)組成(cheng)的機械(xie)混(hun)合(he)層(ceng)降低了(le)摩(mo)(mo)擦(ca)副與(yu)(yu)(yu)涂(tu)(tu)層(ceng)的接觸應力(li),提高了(le)涂(tu)(tu)層(ceng)耐磨性[84]。

4.3原位生成自(zi)潤滑相

利用激(ji)光高(gao)溫原(yuan)位(wei)反(fan)應的(de)自(zi)潤(run)(run)滑(hua)相(xiang)含量更高(gao),具(ju)有更好的(de)減磨(mo)效(xiao)果(guo)。劉(liu)秀(xiu)波等[85]、Liu等[86]以(yi)(yi)NiCr+Cr3C2+WS2粉(fen)末制(zhi)備的(de)涂層原(yuan)位(wei)生成(cheng)了(le)Ti2SC+CrS自(zi)潤(run)(run)滑(hua)相(xiang),在室溫至(zhi)600℃的(de)摩擦(ca)條件下可以(yi)(yi)形成(cheng)潤(run)(run)滑(hua)轉(zhuan)移膜,降低摩擦(ca)系數(shu)、磨(mo)損率;而以(yi)(yi)Ti+TiC+WS2粉(fen)末原(yuan)位(wei)生成(cheng)了(le)Ti2SC+TiS自(zi)潤(run)(run)滑(hua)相(xiang),涂層在中低溫度下具(ju)有不錯的(de)自(zi)潤(run)(run)滑(hua)效(xiao)果(guo),但在500℃以(yi)(yi)上自(zi)潤(run)(run)滑(hua)相(xiang)會(hui)氧(yang)化失效(xiao)形成(cheng)氧(yang)化膜。

通常(chang)石(shi)墨(mo)(mo)烯在激(ji)光(guang)(guang)熔覆(fu)(fu)(fu)過(guo)程中會(hui)優先與(yu)(yu)Ti元(yuan)素(su)(su)反(fan)應生成(cheng)(cheng)(cheng)TiCx,因(yin)此石(shi)墨(mo)(mo)烯難以作為原(yuan)位生成(cheng)(cheng)(cheng)的自(zi)潤滑相(xiang),Weng等[90]通過(guo)調(diao)整粉(fen)末比例、熔覆(fu)(fu)(fu)工(gong)藝參數(shu),采用Ni60+B4C粉(fen)末在TC4表面進(jin)行激(ji)光(guang)(guang)熔覆(fu)(fu)(fu),原(yuan)位生成(cheng)(cheng)(cheng)了與(yu)(yu)石(shi)墨(mo)(mo)烯結構類似(si)的球(qiu)形(xing)石(shi)墨(mo)(mo)。在激(ji)光(guang)(guang)熔覆(fu)(fu)(fu)過(guo)程中原(yuan)位生成(cheng)(cheng)(cheng)球(qiu)形(xing)石(shi)墨(mo)(mo)自(zi)潤滑相(xiang)的機理如圖(tu)7所示,鈦元(yuan)素(su)(su)與(yu)(yu)碳(tan)元(yuan)素(su)(su)生成(cheng)(cheng)(cheng)TiCx后,多余(yu)碳(tan)原(yuan)子沿著(zhu)(zhu)氣泡與(yu)(yu)熔體的界面快速非平衡凝固形(xing)成(cheng)(cheng)(cheng)球(qiu)形(xing)石(shi)墨(mo)(mo),球(qiu)形(xing)石(shi)墨(mo)(mo)使得涂(tu)層的摩擦(ca)系數(shu)降低、耐(nai)磨性顯著(zhu)(zhu)提(ti)高(涂(tu)層耐(nai)磨性是基體的43.67倍)[90]。

t7.jpg

5、總結和展望

綜上,鈦(tai)合金表面激(ji)光(guang)熔(rong)覆(fu)(fu)制備耐(nai)(nai)磨(mo)和(he)(he)自(zi)潤滑涂(tu)層(ceng)(ceng)(ceng)能夠有效解決(jue)鈦(tai)合金耐(nai)(nai)磨(mo)性差的(de)(de)(de)問(wen)題,其中(zhong)(zhong)激(ji)光(guang)熔(rong)覆(fu)(fu)工藝與涂(tu)層(ceng)(ceng)(ceng)組分(fen)(硬(ying)(ying)質(zhi)(zhi)相、基體(ti)相、自(zi)潤滑相)是決(jue)定涂(tu)層(ceng)(ceng)(ceng)耐(nai)(nai)磨(mo)性的(de)(de)(de)主(zhu)要因素(su)。激(ji)光(guang)熔(rong)覆(fu)(fu)工藝參數設定主(zhu)要采用試錯的(de)(de)(de)方(fang)法(fa)進(jin)(jin)行(xing)多次試驗確定熔(rong)覆(fu)(fu)工藝參數;超聲振動可(ke)顯(xian)著減小涂(tu)層(ceng)(ceng)(ceng)晶粒尺(chi)寸,而對涂(tu)層(ceng)(ceng)(ceng)進(jin)(jin)行(xing)熱處理則可(ke)以(yi)有效提(ti)高(gao)(gao)涂(tu)層(ceng)(ceng)(ceng)的(de)(de)(de)斷裂(lie)韌(ren)性。硬(ying)(ying)質(zhi)(zhi)相是提(ti)高(gao)(gao)涂(tu)層(ceng)(ceng)(ceng)耐(nai)(nai)磨(mo)性的(de)(de)(de)關鍵因素(su),采用原位生成(cheng)法(fa)形成(cheng)的(de)(de)(de)硬(ying)(ying)質(zhi)(zhi)相具有無裂(lie)紋(wen)、硬(ying)(ying)質(zhi)(zhi)相邊緣無破碎的(de)(de)(de)小顆(ke)粒的(de)(de)(de)優(you)點(dian),而被廣(guang)泛用于耐(nai)(nai)磨(mo)涂(tu)層(ceng)(ceng)(ceng)中(zhong)(zhong)硬(ying)(ying)質(zhi)(zhi)相的(de)(de)(de)形成(cheng)。鎳基體(ti)相和(he)(he)鈦(tai)基體(ti)相基具有良好的(de)(de)(de)潤濕性,可(ke)顯(xian)著減少涂(tu)層(ceng)(ceng)(ceng)的(de)(de)(de)裂(lie)紋(wen)、氣孔(kong)缺陷(xian),提(ti)高(gao)(gao)涂(tu)層(ceng)(ceng)(ceng)的(de)(de)(de)綜合性能。自(zi)潤滑相的(de)(de)(de)形成(cheng)需要在熔(rong)覆(fu)(fu)粉末(mo)中(zhong)(zhong)添(tian)加能夠原位生成(cheng)自(zi)潤滑相的(de)(de)(de)材料,避免自(zi)潤滑相在激(ji)光(guang)高(gao)(gao)溫作用下大(da)量分(fen)解。為了進(jin)(jin)一(yi)步提(ti)高(gao)(gao)激(ji)光(guang)熔(rong)覆(fu)(fu)技(ji)術(shu)制備的(de)(de)(de)耐(nai)(nai)磨(mo)和(he)(he)自(zi)潤滑涂(tu)層(ceng)(ceng)(ceng)的(de)(de)(de)耐(nai)(nai)磨(mo)性能,今后的(de)(de)(de)研究重點(dian)應集中(zhong)(zhong)在以(yi)下幾個方(fang)面。首先,建立能夠綜合考慮各(ge)(ge)種(zhong)因素(su)(激(ji)光(guang)器類(lei)型、熔(rong)覆(fu)(fu)粉末(mo)類(lei)型和(he)(he)尺(chi)寸等因素(su))的(de)(de)(de)數學模型用于設定熔(rong)覆(fu)(fu)工藝參數,使得涂(tu)層(ceng)(ceng)(ceng)耐(nai)(nai)磨(mo)性能達到(dao)最(zui)佳。其次,開發更多的(de)(de)(de)熔(rong)覆(fu)(fu)粉末(mo)材料,以(yi)解決(jue)涂(tu)層(ceng)(ceng)(ceng)中(zhong)(zhong)硬(ying)(ying)質(zhi)(zhi)相和(he)(he)自(zi)潤滑相含量占(zhan)比偏(pian)低的(de)(de)(de)問(wen)題。最(zui)后,深(shen)入研究不同熔(rong)覆(fu)(fu)粉末(mo)在激(ji)光(guang)熔(rong)覆(fu)(fu)過程發生的(de)(de)(de)各(ge)(ge)種(zhong)復雜化(hua)學反應,進(jin)(jin)一(yi)步提(ti)高(gao)(gao)涂(tu)層(ceng)(ceng)(ceng)耐(nai)(nai)磨(mo)性。

[參考文獻]

[1]DIAOY,ZHANGK.Microstructureandcorrosionres ist-anceofTC2TialloybylasercladdingwithTi/Ti C/TiB2powders[J].AppliedSurfaceScience,2015,352(15 ):163-168.

[2]PLOOYRD,AKINLABIET.Analysisoflasercladdingoftitaniumalloy[J].MaterialsToday:Proceedings,2018,5(9):19594-19603.

[3]WANGH,LIUQ,GUOY,etal.MoFe1.5CrTiWAlNbxr e-fractoryhigh-entropyalloycoatingfabricated bylaserclad-ding[J].Intermetallics,2019,115:106613.

[4]LIUSY,YUNGC.AdditivemanufacturingofTi6 Al4Val-loy:Areview[J].Materials&Design,2019,164:107552.

[5]宋德軍,牛龍,楊勝利.船(chuan)舶海水管路(lu)鈦合金應用技術研究[J].稀有金屬材料與工(gong)程(cheng),2020,49(3):1100-1104.

SONGDJ,NIUL,YANGSL.Researchonapplicationtechnologyoftitaniumalloysinseawaterpipeli nes[J].RareMetalMaterialsandEngineering,2020,49(3):1100 -1104.

[6]COSTAM,VENDITTIML,CIOFFIM,etal.Fatigue be-haviorofPVDcoatedTi-6Al-4Valloy[J].Intern ationalJournalofFatigue,2011,33(6):759-765.

[7]ZHUY,WEIW,JIAX,etal.DepositionofTiCfi lmonti-taniumforabrasionresistantimplantmaterialbyion-enhancedtriodeplasmaCVD[J].AppliedSurfaceScience,2012,262:156-158.

[8]RAMAZANK,URTEKINL,CEYLANA,etal.Threetypesofceramiccoatingapplicabilityinautomo tiveindustryforwearresistancepurpose[J].IndustrialLubrication&Tribology,2005,57(4):140-144.

[9]SUNJ,TONGWP,ZUOL,etal.Low-temperature plas-manitridingoftitaniumlayeronTi/Alcladshee t[J].Ma-terials&Design,2013,47:408-415.

[10]LINYC,CHENHM,CHENYC.Theeffectofdiffer entmethodstoaddnitrogentotitaniumalloysonthe propertiesoftitaniumnitridecladlayers[J].Materials&Design,2014,54:222-229.

[11]NTOMPROUGKIDISV,MARTINJ,NominéA,etal.Se -quentialrunofthePEOprocesswithvariouspuls edbipolarcurrentwaveforms[J].SurfaceandCoatingsTechnology,2019,374:713-724.

[12]LIUXB,MENGXJ,LIUHQ,etal.Developmentan dcharacterizationoflasercladhightemperature self-lubrica-tingwearresistantcompositecoatingsonTi-6Al-4Valloy[J].Materials&Design,2014,55:404-409.

[13]ZHAOYT,LUMY,FANZQ,etal.Microstructure sandmechanicalpropertiesofwear-resistanttitaniu moxidecoat-ingsdepositedonTi-6Al-4Valloyusinglasercladding[J].Journalof

theEuropeanCeramicSociety,40(3):798-810.

[14]李嘉寧.激光熔覆技(ji)術及應用[M].北京:化學工業出(chu)版(ban)社(she),2016.

LIJN.Lasercladdingtechnologyandapplication [M].Beijing:ChemistryIndustryPress,2016.

[15]程成.基于鈦合金(jin)表面激光熔(rong)覆CBN溫度(du)場(chang)及(ji)熔(rong)池特征分析[D].沈(shen)陽:沈(shen)陽航(hang)空大學(xue),2015.

CHENGC.Thetemperaturefieldandtheanalysiso fmolthnpoolbasedonCBNfilmoflasercladdingontitan iumalloysurface[D].Shenyang:ShenyangAerospaceUniversity,2015.

[16]劉成來.TC4鈦合金機匣裂(lie)紋激光熔覆修(xiu)復工藝研究[D].哈(ha)爾濱(bin):哈(ha)爾濱(bin)工業大學,2015.

LIUCL.ResearchoncrackrepairofTC4casingby laserclading[D].Harbin:HarbinInstituteofTechnolog y,2015.

[17]鄭亮(liang).鈦合(he)金表面激光熔覆(fu)二(er)硅化鉬涂層的組織與性能的研究[D].上(shang)海(hai):上(shang)海(hai)工程技術大學,2016.

ZHENGL.MicrostructureandpropertiesofMoSi2c oatinglasercladdingontitaniumalloy[D].Shanghai:Sh anghaiUniversityofEngineeringScience,2016.

[18]崔(cui)愛永,胡芳友(you),張(zhang)忠文,等(deng).鈦(tai)合金表面(mian)激光熔覆(fu)修(xiu)復技術[J].中國表面(mian)工程,2011,24(2):61-64.

CUIAY,HUFY,ZHANGZW,etal.Titaniumalloyla -sercladdingrepairtechnique[J].ChinaSurfaceE ngineer-ing,2011,24(2):61-64.

[19]翁飛(fei).鈦(tai)合(he)金表面(mian)陶瓷(ci)強化(hua)金屬基(ji)復合(he)激光熔覆(fu)層的微(wei)觀組織與(yu)耐磨性(xing)能研究(jiu)[D].濟南:山東大(da)學,2017.

WENGF.Microstructureandwearpropertyofceram icsre-inforcedmetalmatrixcompositelasercladdingcoatingsontitaniumalloy[D].Jinan:ShandongUniversity,2017.

[20]馬永.TC4鈦合(he)金表面激光(guang)熔覆摻Y2O3復合(he)涂層的(de)顯微組織和性(xing)能[D].衡陽:南華大學(xue),2017.

MAY.Microstructureandpropertiesofthelaser claddedcompositecoatingdopedwithY2O3onTC4titaniu malloy[D].Hengyang:UniversityofSouthChina,2017.

[21]高霽,宋德(de)陽,馮俊文.工藝參(can)數對鈦合(he)金激光熔覆CBN涂層(ceng)幾(ji)何形(xing)貌的影響[J].表(biao)面技術,2015(1):77-87.

GAOJ,SONGDY,FENGJW.InfluenceofprocessingparametersongeometricalfeaturesofCBNcoatin gsbylasercladdingontitaniumalloy[J].SurfaceTechnology,2015(1):77-87.

[22]LIYX,SUK,BAIP,etal.Microstructureandp ropertycharacterizationofTi/TiBCNreinforcedTibasedcompositecoatingsfabricatedbylasercladdingwithdifferentscanningspeed[J].MaterialsCharacterization,2020,159:110023.

[23]譚金花(hua),孫榮(rong)祿,牛偉,等(deng).激光掃描速(su)度對TC4合金表面激光熔覆復合涂層組織及性(xing)能(neng)的影響[J].材料導(dao)報,2020,34(12):12094-12100.

TANJH,SUNRL,NIUW,etal.Effectoflaserscann ingspeedonmicrostructureandpropertiesofTC4al loysurfacelasercladdingcompositecoating[J].MaterialsReports,2020,34(12):12094-12100.

[24]馬玲玲.鈦(tai)合金表面(mian)激光熔(rong)覆Ti ̄Ni基復合涂層(ceng)的(de)微(wei)觀組織(zhi)與耐磨性(xing)[D].大連:大連理工大學,2017.

MALL.Microstructureandwearresistanceoflas erclad-dingTi-Nimatrixcompositecoatingontitanium alloysur-face[D].Dalian:DalianUniversityofTechnology,2017.

[25]董濤.鈦合(he)金表(biao)面激光熔覆Ti-Al-Si涂層的結構特(te)征(zheng)及其(qi)高溫抗氧化性能[D].昆明(ming):昆明(ming)理工大學(xue),2017.

DONGT.Microstructurecharacteristicsandhigh tempera-tureoxidationresistanceofTi-Al-Sicoatingontitaniumal-loybylasercladding[D].Kunming:KunmingUniversityofScienceandTechnology,2017.

[26]SUIX,LUJ,ZHANGWP,etal.Effectofspecifi cenergyonmicrostructureandpropertiesoflasercladdedTiN/Ti3AlN-Ti3Alcompositecoating[J].Optics&LaserTech-nology,2020,131:106428.

[27]LIUYA,YANGLJ,YANGXJ,etal.Optimization ofmi-crostructureandpropertiesofcompositecoatin gsbylasercladdingontitaniumalloy[J].CeramicsInternational,2020,47(2):2230-2243.

[28]楊光,薛雄,欽蘭云,等.旋轉磁場對激(ji)光熔(rong)凝(ning)鈦合金(jin)熔(rong)池的(de)影響[J].稀有金(jin)屬(shu)材料(liao)與(yu)工程,2016,45(7):1804-1810.

YANGG,XUEX,QINLY,etal.Effectofrotatingma g-neticfieldonlasermeltingpooloftitaniumall oy[J].RareMetalMaterialsandEngineering,2016,45(7):1804 -1810.

[29]王維,郭鵬飛,張建中(zhong),等(deng).超聲波對BT20鈦合金激光熔覆過程的作用[J].中(zhong)國激光,2013,40(8):0803004.

WANGW,GUOPF,ZHANGJZ,etal.UlatrasoniceffectonlasercladdingBT20titaniumalloypro cess[J].ChineseJournalofLasers,2013,40(8):0803004.

[30]翟永杰(jie),劉秀波,喬世杰(jie),等.熱(re)處理(li)對鈦合(he)金激光熔(rong)覆自潤滑耐磨復(fu)合(he)涂層組織和摩(mo)擦學(xue)性能的(de)影響(xiang)[J].材料保護,2016,49(6):5-8.

ZHAIYJ,LIUXB,QIAOSJ,etal.Influenceofheattreatmentonselflubricatingwearresistant compositecoating’smicrostructureandtribologicalpropertiesontita-niumalloylasercladding[J].MaterialsProtection,2016,49(6):5-8.

[31]LIGJ,LIJ,LUOX.Effectsofpost-heattreatm entonmi-crostructureandpropertiesoflasercladdedcompositecoat-ingsontitaniumalloysubstrate[J].Optics&LaserTech-nology,2015,65:66-75.

[32]CHENT,LIWB,LIUDF,etal.Effectsofheatt reatmentonmicrostructureandmechanicalpropertiesofTiC/TiBcompositebioinertceramiccoatingsin-situsy nthesizedbylasercladdingonTi6Al4V[J].CeramicsInternational,47(1):755-768.

[33]喬世杰(jie),劉秀波(bo),翟永杰(jie),等.時效(xiao)處理(li)對激光(guang)熔覆Ni60 ̄hBN自潤(run)滑耐磨復(fu)合涂層的影響[J].應用激光(guang),2015,35(6):623-628.

QIAOSJ,LIUXB,ZHAIYJ,etal.Effectsofagingtreatmentmicrostructureandtribologicalprope rtyofthelasercladNi60-hBNself-lubricatonganti-we arcompositecoatongsontitaniumalloy[J].AppliedLaser,201 5,35(6):623-628.

[34]SUIX,LUJ,ZHANGX,etal.Microstructureand proper-tiesofTiC-reinforcedTi2Ni/Ti5Si3eutectic -basedlasercladdingcompositecoating[J].JournalofTherma lSprayTechnology,2020,29(7):1838-1846.

[35]SAMARRAA,HUSSEINA,NOFALA,etal.Acontri-butiontolasercladdingofTi-6Al-4Vtitanium alloy[J].MetallurgicalResearchandTechnology,2019,116 (6):634.

[36]劉家(jia)奇,宋明磊(lei),陳傳(chuan)忠(zhong),等.鈦合金表(biao)面激(ji)光熔覆(fu)技術的研(yan)究進展[J].金屬熱處理,2019,44(5):87-96.

LIUJQ,SONGML,CHENCZ,etal.Researchprogres soflasercladdingtechnologyonsurfaceoftitan iumalloy[J].HeatTreatmentofMetals,2019,44(5):87-96.

[37]姚曉敏.鈦合金表(biao)面激(ji)光(guang)熔覆CBN涂層的性(xing)能研究[D].沈陽(yang):沈陽(yang)航(hang)空航(hang)天大學,2013.

YAOXM.StudyonpropertiesofCBNcoatingbylas ercladdingonthesurfaceoftitaniumalloy[D].She nyang:ShenyangAerospaceUniversity,2013.

[38]FUSR,LIJY,WANGP,etal.Comparisonofthe micro-structureevolutionandwearresistanceofTi6Al 4Vcompos-itecoatingsreinforcedbyhardpureorNi-PlatedcubicboronnitrideparticlespreparedwithLaserCladdingonaTi6Al4Vsubstrate[J].Coatings,2020,10(7):10070702.

[39]LIANGJ,YINX,LINZ,etal.Microstructureandwe arbehaviorsoflasercladdingin-situSynthetic( TiBx+TiC)/(Ti2Ni+TiNi)gradientcompositecoatings[J].Vacuum,2020,176(6):109305.

[40]LIGJ,LIJ,LUOX.Effectsofhightemperature treatmentonmicrostructureandmechanicalpropertiesoflaser-cladNiCrBSi/WCcoatingsontitaniumalloysubstrate [J].Mate-rialsCharacterization,2014,98:83-92.

[41]WENGF,YUHJ,CHENCZ,etal.Microstructures andwearpropertiesoflasercladdingCo-basedcomp  ositecoat-ingsonTi-6Al-4V[J].Materials&Design,2015, 80:174-181.

[42]TIANYS,CHENCZ,CHENLB,etal.Wearpropert iesofalloyedlayersproducedbylasersurfaceallo yingofpuretitaniumwithB4CandTimixedpowders[J].JournalofMa-terialsScience,2005,40(16):4387-4390.

[43]ZHANGYL,LIJ,ZHANGYY,etal.Evolutioninm icro-structureandhigh-temperatureoxidationbehav iorsofthelaser-claddingcoatingswiththeSiadditioncontents[J].JournalofAlloysandCompounds,2020,827:15413 1.

[44]MAKUCHN,KULKAM,DZIARSKIP,etal.Lasersur-facealloyingofcommerciallypuretitaniumwith boronandcarbon[J].OpticsandLasersinEngineering,2014,57:64-81.

[45]劉頔,李敏,黃堅,等.CeO2含量對激光熔覆TiB/TiN涂層顯(xian)微(wei)組織(zhi)和性能的影響[J].中國激光,2017,44(12):1202009.

LIUD,LIM,HUANGJ,etal.EffectofCeO2content onmicrostructuresandpropertiesofTiB/TiNcoati ngbylasercladding[J].ChineseJournalofLasers,2017,44(12):1202009.

[46]石皋(gao)蓮,劉秀(xiu)波,吳(wu)少華,等.TA2鈦(tai)合金表面激光熔覆Ti2SC/TiS自潤滑耐磨復合涂層組織與性能[J].材料熱(re)處理學報,2016,37(7):198-202.

SHIGL,LIUXB,WUSH,etal.MicrostructureandpropertyoflasercladTi2SC/TiSself-lubricatinganti-wearcompositecoatingonTA2titaniumalloy[J].TransactionsofMaterialsandHeatTreatment,2016,37(7):198-202.

[47]WANGY,LIUXB,LIUYF,etal.Microstructure andtri-bologicalperformanceofNi60-basedcomposite coatingsonTi6Al4ValloywithdifferentTi3SiC2ceramicadditionsbylasercladding[J].CeramicsInternational,2020,46(18):28996-29010.

[48]高超,趙忠民,張龍,等.潘超重力(li)下燃燒(shao)合(he)成(cheng)TiC(Ti,W)C1-x基細晶復合(he)陶瓷研究[J].粉末冶金工(gong)業,2011,21(2):36-40.

GAOC,ZHAOZM,ZHANGL,etal.Fine-grainedTiC(Ti,W)C1-xmatrixceramicspreparedbycombustionsyn-thesisunderhighgravity[J].PowderMetallurgyIndustry,2011,21(2):36-40.

[49]張志強,楊凡,張天剛,等.激光(guang)熔覆碳(tan)化鈦(tai)增(zeng)強鈦(tai)基復合涂層研究進展[J].表面技術(shu),2020,49(10):138-168.

ZHANGZQ,YANGF,ZHANGTG,etal.Researchpro-gressoflasercladdingtitaniumcarbidereinforcedtitanium-basedcompositecoating[J].SurfaceTechnology,20 20,49(10):138-168.

[50]ZHAOZY,ZHANGLZ,BAIPK,etal.Tribological be-haviorofinsituTiC/Graphene/Graphite/Ti6Al4V matrixcompositethroughLasercladding[J].ActaMetallurgicaSinica,2021,34:1317-1330.

[51]羅雅,袁(yuan)琛杰(jie),趙慧峰,等.鈦(tai)合金表面激(ji)光熔覆Ti/Ni+ZrO2涂層的組(zu)織與性能[J].理化檢(jian)驗-物理分冊,2018,54(2):103-107.

LUOY,YUANCJ,ZHAOHF,etal.MicrostructureandpropertiesofTi/Ni+ZrO2lasercladdinglayeronTA15tita-niumalloysurface[J].PhysicalTestingandChemicalAnalysisPartA:Physical Testing,2018,54(2):103-107.

[52]WANGFF,LIC,SUNS,etal.Al2O3/TiO2-Ni-WCcom-positecoatingsdesignedforenhancedwearperfo rmancebylasercladdingunderhigh-frequencymicro-vibration[J].Metals&MaterialsSociety,2020,72(11):4060-40 68.

[53]WANGD,TIANZ,WANGS,etal.Microstructural char-acterizationofAl2O3-13%TiO2ceramiccoatings preparedbysquashpresettinglasercladdingonGH4169su peralloy[J].Surfaceand CoatingsTechnology,2014,254:195-201.

[54]郭英奎,李(li)東波(bo),周(zhou)玉(yu),等.ZrO2(2Y)/316L不銹(xiu)鋼(gang)復(fu)合材料的微(wei)觀(guan)組織[J].中國有(you)色金屬學報(bao),2003,13(4):963-967.

GUOYK,LIDB,ZHOUY,etal.ZrO2(2Y)/316Lmi-crostructureofstainlesssteelcomposites[J].T heChinsesJournalofNonferrousMetals,2003,13(4):963-967.

[55]ZHANGTG,ZHUANGHF,ZHANGQ,etal.InfluenceofY2O3onthemicrostructureandtribologicalp ropertiesofTi-basedwear-resistantlaser-cladlayersonTC 4alloy[J].CeramicsInternational,2020,46(9):13711-13723.

[56]HANG.EffectoftheAdditionofCeO2onthemi crostructureandcorrosionofin-situTiB/Ticompositecoatingspreparedbylasercladdingtechnology[J].InternationalJournalof ElectrochemicalScience,2021,16(2):210255.

[57]LIANGJ,YINX,LINZ,etal.EffectsofLaB6on micro-structureevolutionandpropertiesofin-situs yntheticTiC+TiBxreinforcedtitaniummatrixcompositecoati ngsprepared bylasercladding[J].SurfaceandCoatingsTechn ology,2020,403:126409.

[58]林沛(pei)玲,張(zhang)有鳳,楊灣灣,等.掃(sao)描速度對(dui)激光熔(rong)覆鈦合金復合涂(tu)層(ceng)顯微組(zu)織(zhi)的影響[J].熱(re)加工(gong)(gong)工(gong)(gong)藝(yi),2019,48(10):132-135.

LINPL,ZHANGYF,YANGWW,etal.Effectofscan-ningspeedonmicrostructureoflasercladdingt itaniumalloycompositecoating[J].HotWorkingTechnology,201 9,48(10):132-135.

[59]ZHAOYT,FANZQ,TANQY,etal.Interfacialan dtri-bologicalpropertiesoflaserdepositedTiOxNy/ TicompositecoatingonTialloy[J].TribologyInternational,2020,155:106758.

[60]LUMY,PAULMC,ZHAOYT,etal.Laserdepositi onofcompositionallygradedtitaniumoxideonTi6Al4 Valloy[J].CeramicsInternational,2018,44(17):20851-2086 1.

[61]何星華,許曉靜,戈(ge)曉嵐,等(deng).TC4鈦(tai)合(he)金表面激光熔覆含La2O3的(de)F101鎳基涂層[J].稀有(you)金屬材料與(yu)工程(cheng),2017(4):1074-1079.

HEXH,XUXJ,GEXL,etal.LasercladdingofF101nickelbasedcoatingcontainingLa2O3onTC4tit aniumalloy[J].RareMetalMaterialsandEngineering,2017(4):1074-1079.

[62]張天(tian)剛,莊懷風,姚波,等.Y2O3對(dui)鈦基激(ji)光熔覆層(ceng)組(zu)織及性能(neng)的影響[J].復合材料學報,2020,37(6):1390-1400.

ZHANGTG,ZHUANGHF,YAOB,etal.EffectofY2O3onmicrostructureandpropertiesofTi-basedlasercladdinglayer[J].ActaMateriaeCompositaeSinica,2020,37(6):1390-1400.

[63]孫榮祿,牛偉(wei),王成揚.鈦合(he)金(jin)(jin)表面(mian)激光熔覆TiN-Ni基合(he)金(jin)(jin)復合(he)涂層的組織和磨損性能[J].稀有(you)金(jin)(jin)屬材料與工程(cheng),2007,36(1):7-10.

SUNRL,NIUW,WANGCY.MicrostructureandwearpropertiesoflasercladdingTiN-Nibasedalloycompositecoatingontitaniumalloysurface[J].RareMetalMaterialsandEngineering,2007,36(1):7-10.

[64]高秋實,閆華,秦(qin)陽,等.鈦合金表面激光熔(rong)覆(fu)Ti-Ni+TiN+MoS2/TiS自潤滑復合涂層[J].材料(liao)研究學報,2018,32(12):921-928.

GAOQS,YANH,QINY,etal.Self-lubricatingwear re-sistantcompositecoatingTi-Ni+TiN+MoS2/TiS preparedonTi-6Al-4Valloybylasercladding[J].ChineseJournalofMaterialsResearch,2018,32(12):921-928.

[65]JEYAPRAKASHN,YANGCH,TSENGSP.Character-izationandtribologicalevaluationofNiCrMoNbandNiCrB-SiClasercladdingonnear-αtitaniumalloy[J].TheInter-nationalJournalofAdvancedManufacturingTech nology,2020,106(5):2347-2361.

[66]石皋蓮(lian),吳少華,劉(liu)秀波(bo),等.含h ̄BN的鈦(tai)合金激光熔覆自潤滑(hua)耐(nai)磨涂層的摩擦學(xue)行(xing)為[J].潤滑(hua)與密(mi)封,2015,40(11):89-93.

SHIGL,WUSH,LIUXB,etal.Tribologicalproper tiesofself-lubricatinganti-wearcompositecoating with10%h-BNonTi6Al4Valloybylasercladding[J].LubricationEn-gineering,2015,40(11):89-93.

[67]李春燕(yan),寇生(sheng)中,趙燕(yan)春,等(deng).鈦合(he)金表面激(ji)光熔覆(fu)Co-WC復合(he)涂層(ceng)的組織及力學性(xing)能[J].功能材(cai)料,2015,46(7):07025-07029.

LICY,KOUSZ,ZHAOYC,etal.MicrostructureandmechanicalpropertiesoflasercladdingCo-WCcompositecoatingontitaniumalloy[J].JorunalofFunction alMateri-als,2015,46(7):07025-07029.

[68]WENGF,YUHJ,CHENCZ,etal.FabricationofC o-basedcoatingsontitaniumalloybylasercladdi ngwithCeO2addition[J].MaterialsandManufacturingProcess es,2016,31(11):1461-1467.

[69]WENGF,YUHJ,CHENCZ,etal.Microstructure andpropertyofcompositecoatingsontitaniumalloy depositedbylasercladdingwithCo42+TiNmixedpowders[J].Jo urnalofAlloys&Compounds,2016,686:74-81.

[70]張(zhang)珊(shan).鈦(tai)合金激(ji)光(guang)熔(rong)覆鈷基涂層(ceng)的(de)制備及數值模擬[D].大(da)連:大(da)連理工大(da)學(xue),2015.

ZHANGS.FabricationandNumericalSimulationof cobalt-basedcompositecoatingontitaniumalloysurfacebylasercladding[D].Dalian:DalianUniversityofTechnology,2015.

[71]LIJ,SUM,LIG,etal.Atomicstructurerevolutio nandexcellentperformanceimprovementofcomposites inducedbylaserultrafine-nanotechnology[J].CompositesPartBEngineering,2020,185:107792.

[72]SHUFY,ZHANGB,LIUT,etal.EffectsoflaserpoweronmicrostructureandpropertiesoflasercladdedCoCrBFe-NiSihigh-entropyalloyamorphouscoatings[J].SurfaceandCoatingsTechnology,2019,358:667-675.

[73]李春(chun)燕,寇生(sheng)中,趙燕春(chun),等.鈦合(he)(he)金表面激光熔覆鈷(gu)基(ji)合(he)(he)金層(ceng)的組織及力學性(xing)能[J].材料熱處理學報,2015,36(2):171-178.

LICY,KOUSZ,ZHAOYC,etal.MicrostructureandmechanicalpropertyoflasercladCo-basedalloy coatingsontitaniumalloy[J].TransactionsofMaterialsand HeatTreat-ment,2015,36(2):171-178.

[74]董(dong)世運(yun),馬運(yun)哲,徐濱士,等.激(ji)光熔覆材(cai)料研究現狀[J].材(cai)料導報(bao),2006,20(6):5-13.

DONGSY,MAYZ,XUBS,etal.Currentstatusofma -terialforlasercladding[J].MaterialsReports, 2006,20(6):5-13.

[75]DJANARTHANYS,VIALAJC,BOUIXJ.Anoverview ofmonolithictitaniumaluminidesbasedonTi3Ala ndTiAl[J].MaterialsChemistry&Physics,2001,72(3):301-319.

[76]LYUS,SUNY,RENL,etal.Simultaneouslyachievin ghightensilestrengthandfracturetoughnessof Ti/Ti-Almultilayeredcomposites[J].Intermetallics,2017,90:16-22.

[77]ZHANGWB,LIWS,ZHAIHM,etal.Microstructureandtribologicalpropertiesoflaserin-situsyn thesizedTi3AlcompositecoatingonTi-6Al-4V[J].SurfaceandCoatingsTechnology,2020,395:125944.

[78]LIJN,CHENCZ,WANGDG.Surfacemodificationofti-taniumalloywithlasercladdingREoxidesreinf orcedTi3Al-matrixcomposites[J].CompositesPartB:Engineering,2012,43(3):1207-1212.

[79]馬玲玲,李涵(han),孫(sun)琳,等.鈦合(he)金表面激光熔覆Ti/Ni-AlN復合(he)涂層的組織與摩擦(ca)磨損性能[J].熱加工工藝,2018,47(4):180-184.

MALL,LIH,SUNL,etal.Microstructureandfrict ionandwearpropertiesoflasercladdingTi/Ni-AlN compositecoatingontitaniumalloysurface[J].HotWorkingTechnol-ogy,2018,47(4):180-184.

[80]LIUSN,LIUZD,WANGY,etal.Ti-basedcompositecoatingswithgradientTiCxreinforcementsonTC4titaniumalloypreparedbylasercladding[J].ScienceChina,2014,57(7):1454-1461.

[81]ADESINAO,FAROTADEGA,PopoolaAP.Synthesis,parametricandtribologicalstudyoflasercladCo-Nibinarycoatingsontitaniumalloy[J].MaterialsResearchExpress,2019,6(5):056512.

[82]張顯,胡記(ji),隋欣(xin)夢,等.Cr元素含量對TC21鈦(tai)合金表面激光熔覆Ni-Al涂層(ceng)組織與性能的影(ying)響[J].表面技術,2020,49(1):311-317.

ZHANGX,HUJ,SUIXM,etal.Effectsofchromiumel-ementcontentonmicrostructuresandpropertiesoflasercladdingNi-AlcoatingonTC21titaniumalloy[J].SurfaceTechnology,2020,49(1):311-317.

[83]孟祥軍,劉秀波,劉海青,等.鈦合金(jin)表(biao)面激光熔覆高溫自潤滑(hua)耐磨復(fu)合涂層[J].焊接學報,2015,36(5):59-64.

MENGXJ,LIUXB,LIUHQ,etal.Hightemperatureself-lubricatingwearresistantcompositecoatingpreparedontitaniumalloysurfacebylasercladding[J].TransactionsoftheChinaWeldingInstitution,2015,36(5):59-64.

[84]ZHANGLZ,ZHAOZY,BAIPK,etal.In-situsynthesisofTiC/graphene/Ti6Al4Vcompositecoatingbylaserclad-ding[J].MaterialsLetters,2020,270:127711.

[85]劉秀波,王勉,喬世杰,等.TA2合(he)金(jin)激(ji)光(guang)熔覆鈦基自潤滑耐磨復合(he)涂層的高溫摩擦學(xue)性能(neng)[J].摩擦學(xue)學(xue)報,2018,38(3):283-290.

LIUXB,WANGM,QIAOSJ,etal.Hightemperaturetribologicalpropertiesoflasercladdingtitaniummatrixself-lubricatingwearresistantcompositecoatingonTA2Alloy[J].Tribology,2018,38(3):283-290.

[86]LIUXB,MENGXJ,LIUHQ,etal.Developmentandcharacterizationoflasercladhightemperatureself-lubrica-tingwearresistantcompositecoatingsonTi-6Al-4Valloy[J].MaterialsandDesign,2014,55:404-409.

[87]JIANGBZ,ZHAOZC,GONGZB,etal.Superlubricityofmetal-metalinterfaceenabledbygraphenean dMoWS4nanosheets[J].AppliedSurfaceScience,2020,520:146303.

[88]MOKHALINGAMA,KUMARD,SRIVASTAVAA.Me-chanicalbehaviourofgraphenereinforcedaluminumnanocomposites[J].MaterialsToday:Proceedings,2017,4(2):3952-3958.

[89]牛偉(wei),孫榮(rong)祿.h ̄BN含量對激光熔覆(fu)自潤滑(hua)涂層微觀組織和磨損性能(neng)的(de)影響(xiang)[J].中國激光,2011,38(8):0803011.

NIUW,SUNRL.Effectofh-BNcontentonmicrostr uc-turesandwearresistanceoflasercladdingself -lubricantcoatings[J].ChineseJournalofLasers,2011,38(8):0803011.

[90]WENGF,HUC,CHENCZ,etal.Lasercladdingin ducedsphericalgraphiticphasesbysuper-assemblyo fgraphene-likemicrostructuresandtheantifrictionbehavior[J].ACSCentralScience,2021,7(2):318-326.

在線(xian)客服
客服電話(hua)

全國免費服務熱線
0917 - 3388692
掃一掃

jenota.com.cn
利泰金屬手機網

返回頂部

↑