亚洲中文字幕一区精品自拍_国产精品VA在线观看无码_翁吻乳婷婷小玲21章_久久久久久久精品国产亚洲87

高壓熱處理對航空鈦合金葉輪用TC11鈦合金組織及力學性能的影響

發布時間: 2023-12-13 18:05:04    瀏覽次(ci)數:

TC11鈦合金具有比強(qiang)(qiang)度高、耐高溫、耐腐(fu)蝕和加工(gong)(gong)性良好等(deng)特點(dian),常作為結構材(cai)料(liao)(liao)用(yong)于制造壓氣機盤、葉片等(deng)零部件,有著廣(guang)泛(fan)的(de)應用(yong)[1-4]。近年來,隨著技術(shu)(shu)水平的(de)不斷(duan)提(ti)高,對(dui)TC11鈦合(he)金(jin)的(de)需(xu)求逐(zhu)年提(ti)升(sheng),同(tong)時(shi)(shi)也對(dui)TC11鈦合(he)金(jin)的(de)使用(yong)性能(neng)(neng)(neng),尤其是綜(zong)合(he)力(li)學性能(neng)(neng)(neng)提(ti)出了(le)更高的(de)要求。為了(le)獲得綜(zong)合(he)力(li)學性能(neng)(neng)(neng)良好的(de)TC11鈦合(he)金(jin),工(gong)(gong)業上(shang)常通過退火處(chu)理(li)、淬火時(shi)(shi)效處(chu)理(li)和形(xing)變熱(re)處(chu)理(li)等(deng)工(gong)(gong)藝來改善微(wei)觀組織結構[5-9]。白(bai)鷺等(deng)[10]對(dui)TC11進(jin)行(xing)了(le)700℃熱(re)旋(xuan)壓+時(shi)(shi)效處(chu)理(li),研究表明,TC11的(de)抗拉(la)強(qiang)(qiang)度最大可達到1242MPa,與退火態的(de)TC11鈦合(he)金(jin)原(yuan)料(liao)(liao)相比,綜(zong)合(he)力(li)學性能(neng)(neng)(neng)得到了(le)顯(xian)著的(de)提(ti)升(sheng)。然而,這些方法存在工(gong)(gong)藝周(zhou)期長、工(gong)(gong)藝復雜等(deng)缺(que)點(dian)。因(yin)此,探索一種新的(de)熱(re)處(chu)理(li)技術(shu)(shu),對(dui)提(ti)高鈦合(he)金(jin)的(de)綜(zong)合(he)力(li)學性能(neng)(neng)(neng)具有重要意義。

鈦合金葉輪

近年來研究(jiu)發現,在(zai)熱(re)(re)處(chu)理(li)過程中施加壓(ya)力可以促進(jin)新(xin)相(xiang)形核,細化晶粒尺寸,從而改(gai)善材料的(de)(de)微觀(guan)結構和(he)(he)(he)力學(xue)(xue)性(xing)能(neng)[11-15]。Gu等[16]對(dui)(dui)熔滲(shen)(shen)后(hou)的(de)(de)Cu-Cr合(he)金進(jin)行了(le)高(gao)壓(ya)熱(re)(re)處(chu)理(li),結果表(biao)明,經(jing)(jing)過3GPa的(de)(de)高(gao)壓(ya)處(chu)理(li)后(hou),Cu-Cr合(he)金的(de)(de)硬度(du)(du)和(he)(he)(he)壓(ya)縮屈(qu)服強(qiang)(qiang)度(du)(du)分別(bie)為134HB和(he)(he)(he)241MPa,比滲(shen)(shen)透態(tai)Cu-Cr合(he)金的(de)(de)分別(bie)提高(gao)了(le)11.67%和(he)(he)(he)19.31%。Wei等[17]研究(jiu)發現,在(zai)2GPa和(he)(he)(he)474K下處(chu)理(li)1h后(hou),Al-Mg合(he)金的(de)(de)力學(xue)(xue)性(xing)能(neng)顯著改(gai)善,拉(la)伸強(qiang)(qiang)度(du)(du)達到467MPa,屈(qu)服強(qiang)(qiang)度(du)(du)達到245MPa,是常壓(ya)處(chu)理(li)的(de)(de)3倍。劉建強(qiang)(qiang)等[18]對(dui)(dui)TC6鈦合(he) 金進(jin)行了(le)2GPa高(gao)壓(ya)熱(re)(re)處(chu)理(li),研究(jiu)發現,經(jing)(jing)2GPa高(gao)壓(ya)熱(re)(re)處(chu)理(li)后(hou),TC6合(he)金的(de)(de)硬度(du)(du)為5.27GPa,彈性(xing)模量為131.36GPa,較(jiao)退火態(tai)的(de)(de)4.12GPa和(he)(he)(he)117.24GPa有了(le)較(jiao)大的(de)(de)提升。然(ran)而,現階段關于高(gao)壓(ya)熱(re)(re)處(chu)理(li)對(dui)(dui)TC11合(he)金微觀(guan)組(zu)(zu)織影響和(he)(he)(he)力學(xue)(xue)性(xing)能(neng)關系的(de)(de)研究(jiu)較(jiao)少。為此(ci),本文將研究(jiu)高(gao)壓(ya)熱(re)(re)處(chu)理(li)對(dui)(dui)TC11鈦合(he)金微觀(guan)組(zu)(zu)織和(he)(he)(he)力學(xue)(xue)性(xing)能(neng)的(de)(de)影響規(gui)律。

1、實驗

選擇退火態的TC11鈦合金為(wei)研究(jiu)對象,其化(hua)學(xue)成分如(ru)表1所示(shi)。采用六面頂高壓(ya)設備對試(shi)(shi)(shi)樣尺寸為(wei)Φ6mm×10mm的退(tui)火(huo)態(tai)(tai)TC11鈦合(he)金(jin)試(shi)(shi)(shi)樣進(jin)(jin)行高壓(ya)熱(re)處理實驗,其工藝(yi)示(shi)意圖(tu)如(ru)圖(tu)1所示(shi)。高壓(ya)熱(re)處理工藝(yi)流程如(ru)下(xia)(xia):分別在1、3、5GPa壓(ya)力(li)下(xia)(xia),將退(tui)火(huo)態(tai)(tai)TC11鈦合(he)金(jin)試(shi)(shi)(shi)樣加熱(re)至(zhi)(zhi)1000℃并(bing)保持20min,然后斷電取(qu)出(chu)試(shi)(shi)(shi)樣,空(kong)冷至(zhi)(zhi)室溫。為(wei)了對比研究(jiu),在常壓(ya)下(xia)(xia)對退(tui)火(huo)態(tai)(tai)TC11鈦合(he)金(jin)試(shi)(shi)(shi)樣進(jin)(jin)行熱(re)處理,其工藝(yi)過程為(wei):在KL-12D箱式電阻爐(lu)中將試(shi)(shi)(shi)樣加熱(re)至(zhi)(zhi)1000℃并(bing)保持20min,然后取(qu)出(chu)試(shi)(shi)(shi)樣空(kong)冷至(zhi)(zhi)室溫。

b1.jpg

t1.jpg

采用納米力學測試儀(納米壓痕壓頭為曲率半徑150nm的Berkovich壓頭)對高壓熱處理和常壓熱處理的TC11鈦合金試樣的抗塑性變形能力進行測試,采用的外力載荷為3000μN,載荷保持時間為2min,載荷加載和卸載速率均為90μN/s。采用WDW3100型電子萬能實驗機和FM-ARS-9000型硬度計對實驗試樣的室溫抗壓強度和硬度進行測試。采用Gleeble-3800熱模擬實驗機測試400℃下試樣的抗壓強度,具體過程如下:以5℃/s的加熱速率升溫到400℃,然后在該溫度下保持3min,在變形速率為1s?1條件下進行(xing)(xing)熱壓(ya)縮實(shi)驗。采用S-4800掃描電子顯微(wei)鏡(SEM)對試(shi)樣的顯微(wei)組織和(he)壓(ya)縮斷(duan)口(kou)進行(xing)(xing)分析(xi)。采用DMAX-RB型號X射線衍射儀(XRD)分析(xi)試(shi)樣物相組成,采用JEOL-2010透射電子顯微(wei)鏡(TEM)觀察試(shi)樣的微(wei)觀組織和(he)位(wei)錯密度。

2、結果與分析

2.1高壓熱處理后TC11鈦合金微觀組織

不(bu)(bu)同(tong)狀(zhuang)態下TC11鈦(tai)合(he)(he)金(jin)的(de)(de)顯微(wei)(wei)組(zu)(zu)織(zhi)如圖(tu)2所(suo)示。由圖(tu)2a可以(yi)(yi)看出,原始(shi)退火態TC11鈦(tai)合(he)(he)金(jin)試樣(yang)的(de)(de)微(wei)(wei)觀(guan)(guan)組(zu)(zu)織(zhi)由α相(xiang)(xiang)(xiang)(xiang)和晶間β相(xiang)(xiang)(xiang)(xiang)組(zu)(zu)成,其(qi)中α相(xiang)(xiang)(xiang)(xiang)為(wei)(wei)(wei)圖(tu)2a中的(de)(de)白色組(zu)(zu)織(zhi),表現出不(bu)(bu)規則的(de)(de)塊(kuai)狀(zhuang)和條(tiao)(tiao)狀(zhuang)特(te)(te)征,β相(xiang)(xiang)(xiang)(xiang)為(wei)(wei)(wei)晶間黑(hei)色組(zu)(zu)織(zhi)。圖(tu)2b為(wei)(wei)(wei)經1000℃常(chang)壓退火處(chu)(chu)(chu)(chu)理(li)后(hou)(hou)的(de)(de)微(wei)(wei)觀(guan)(guan)組(zu)(zu)織(zhi)形貌(mao),可以(yi)(yi)看到(dao),組(zu)(zu)織(zhi)由條(tiao)(tiao)狀(zhuang)α相(xiang)(xiang)(xiang)(xiang)和晶間β組(zu)(zu)成。與原始(shi)退火態相(xiang)(xiang)(xiang)(xiang)比,圖(tu)2b中α相(xiang)(xiang)(xiang)(xiang)的(de)(de)特(te)(te)征形貌(mao)發生了(le)變化,由不(bu)(bu)規則的(de)(de)塊(kuai)狀(zhuang)全部轉化為(wei)(wei)(wei)條(tiao)(tiao)狀(zhuang),經測(ce)量,常(chang)壓處(chu)(chu)(chu)(chu)理(li)后(hou)(hou),α相(xiang)(xiang)(xiang)(xiang)板(ban)條(tiao)(tiao)束長(chang)度約為(wei)(wei)(wei)21.5μm,板(ban)條(tiao)(tiao)束寬(kuan)度約為(wei)(wei)(wei)3.45μm,如圖(tu)2c—e所(suo)示,經高壓熱(re)處(chu)(chu)(chu)(chu)理(li)后(hou)(hou),組(zu)(zu)織(zhi)中的(de)(de)α相(xiang)(xiang)(xiang)(xiang)呈頸縮連接或局部斷開的(de)(de)細(xi)(xi)條(tiao)(tiao)狀(zhuang),與常(chang)壓熱(re)處(chu)(chu)(chu)(chu)理(li)的(de)(de)試樣(yang)相(xiang)(xiang)(xiang)(xiang)比,經過高壓熱(re)處(chu)(chu)(chu)(chu)理(li)的(de)(de)TC11鈦(tai)合(he)(he)金(jin)組(zu)(zu)織(zhi)中的(de)(de)α相(xiang)(xiang)(xiang)(xiang)得到(dao)了(le)明顯細(xi)(xi)化,α相(xiang)(xiang)(xiang)(xiang)板(ban)條(tiao)(tiao)束長(chang)度為(wei)(wei)(wei)8~10μm,板(ban)條(tiao)(tiao)束寬(kuan)度為(wei)(wei)(wei)1.4~1.6μm。進一步分(fen)析1、3、5GPa壓力(li)(li)處(chu)(chu)(chu)(chu)理(li)試樣(yang)微(wei)(wei)觀(guan)(guan)組(zu)(zu)織(zhi)的(de)(de)差(cha)異,可以(yi)(yi)發現,隨著壓力(li)(li)的(de)(de)增大,合(he)(he)金(jin)的(de)(de)組(zu)(zu)織(zhi)特(te)(te)征變化不(bu)(bu)明顯,相(xiang)(xiang)(xiang)(xiang)比之下,3GPa壓力(li)(li)處(chu)(chu)(chu)(chu)理(li)后(hou)(hou)的(de)(de)組(zu)(zu)織(zhi)較細(xi)(xi),α相(xiang)(xiang)(xiang)(xiang)板(ban)條(tiao)(tiao)束的(de)(de)長(chang)度約為(wei)(wei)(wei)8.25μm,寬(kuan)度約為(wei)(wei)(wei)1.45μm,因此,選擇3GPa壓力(li)(li)處(chu)(chu)(chu)(chu)理(li)試樣(yang)為(wei)(wei)(wei)代(dai)表,與常(chang)壓熱(re)處(chu)(chu)(chu)(chu)理(li)試樣(yang)進行對(dui)比分(fen)析。

t2.jpg

以3GPa高(gao)壓(ya)(ya)(ya)(ya)(ya)熱(re)(re)(re)(re)處(chu)理(li)(li)(li)試(shi)樣和(he)常(chang)壓(ya)(ya)(ya)(ya)(ya)處(chu)理(li)(li)(li)試(shi)樣為(wei)(wei)例,進(jin)行(xing)TEM形(xing)貌對比分(fen)析,研(yan)究高(gao)壓(ya)(ya)(ya)(ya)(ya)熱(re)(re)(re)(re)處(chu)理(li)(li)(li)與(yu)(yu)常(chang)壓(ya)(ya)(ya)(ya)(ya)熱(re)(re)(re)(re)處(chu)理(li)(li)(li)對TC11鈦(tai)合(he)金顯(xian)微(wei)組(zu)(zu)織(zhi)(zhi)的(de)(de)影響。圖(tu)3a為(wei)(wei)常(chang)壓(ya)(ya)(ya)(ya)(ya)熱(re)(re)(re)(re)處(chu)理(li)(li)(li)TC11鈦(tai)合(he)金的(de)(de)TEM形(xing)貌,可(ke)(ke)以看出,α相(xiang)(xiang)呈條狀(zhuang)且平直(zhi)的(de)(de)形(xing)態(tai)特征。圖(tu)3b為(wei)(wei)3GPa高(gao)壓(ya)(ya)(ya)(ya)(ya)熱(re)(re)(re)(re)處(chu)理(li)(li)(li)后(hou)(hou)的(de)(de)微(wei)觀組(zu)(zu)織(zhi)(zhi),可(ke)(ke)以觀察(cha)到,條狀(zhuang)的(de)(de)α相(xiang)(xiang)有(you)熔斷現(xian)象,并(bing)且組(zu)(zu)織(zhi)(zhi)中形(xing)成大量(liang)(liang)散亂(luan)的(de)(de)細小(xiao)條狀(zhuang)α相(xiang)(xiang)。進(jin)一步對組(zu)(zu)織(zhi)(zhi)內部的(de)(de)位錯(cuo)特征進(jin)行(xing)對比分(fen)析,結(jie)果(guo)如圖(tu)4所(suo)(suo)示。可(ke)(ke)以發現(xian),經(jing)3GPa高(gao)壓(ya)(ya)(ya)(ya)(ya)熱(re)(re)(re)(re)處(chu)理(li)(li)(li)后(hou)(hou),組(zu)(zu)織(zhi)(zhi)中的(de)(de)位錯(cuo)密(mi)度較常(chang)壓(ya)(ya)(ya)(ya)(ya)熱(re)(re)(re)(re)處(chu)理(li)(li)(li)后(hou)(hou)的(de)(de)位錯(cuo)密(mi)度明顯(xian)提高(gao)。常(chang)壓(ya)(ya)(ya)(ya)(ya)和(he)3GPa高(gao)壓(ya)(ya)(ya)(ya)(ya)熱(re)(re)(re)(re)處(chu)理(li)(li)(li)試(shi)樣的(de)(de)XRD結(jie)果(guo)如圖(tu)5所(suo)(suo)示,可(ke)(ke)以看出,3GPa高(gao)壓(ya)(ya)(ya)(ya)(ya)熱(re)(re)(re)(re)處(chu)理(li)(li)(li)和(he)常(chang)壓(ya)(ya)(ya)(ya)(ya)熱(re)(re)(re)(re)處(chu)理(li)(li)(li)后(hou)(hou)的(de)(de)TC11鈦(tai)合(he)金組(zu)(zu)織(zhi)(zhi)均由α相(xiang)(xiang)和(he)β相(xiang)(xiang)兩相(xiang)(xiang)組(zu)(zu)成,僅是α相(xiang)(xiang)、β相(xiang)(xiang)的(de)(de)衍射峰(feng)強度和(he)峰(feng)位有(you)所(suo)(suo)不同。由此可(ke)(ke)見(jian),高(gao)壓(ya)(ya)(ya)(ya)(ya)熱(re)(re)(re)(re)處(chu)理(li)(li)(li)能改變TC11鈦(tai)合(he)金組(zu)(zu)成相(xiang)(xiang)的(de)(de)形(xing)狀(zhuang)、大小(xiao)、數量(liang)(liang)與(yu)(yu)分(fen)布,但并(bing)未導致新相(xiang)(xiang)生(sheng)成。

t3-4.jpg

t5.jpg

對常(chang)(chang)壓和(he)高(gao)(gao)壓熱處(chu)理(li)(li)后TC11鈦(tai)合(he)金(jin)(jin)(jin)的(de)組(zu)織變化(hua)規律進行分(fen)(fen)析,認為當TC11鈦(tai)合(he)金(jin)(jin)(jin)被加(jia)熱至(zhi)1000℃時,合(he)金(jin)(jin)(jin)處(chu)在(zai)β單(dan)相(xiang)(xiang)區,在(zai)隨后的(de)冷卻過程(cheng)(cheng)中(zhong),TC11鈦(tai)合(he)金(jin)(jin)(jin)將發生(sheng)β相(xiang)(xiang)向(xiang)α相(xiang)(xiang)轉變[19],因此,經過常(chang)(chang)壓熱處(chu)理(li)(li)和(he)高(gao)(gao)壓熱處(chu)理(li)(li)后,TC11微觀(guan)組(zu)織由α相(xiang)(xiang)和(he)晶間β相(xiang)(xiang)組(zu)成。進一(yi)步對高(gao)(gao)壓熱處(chu)理(li)(li)后的(de)組(zu)織細(xi)化(hua)原因進行分(fen)(fen)析。研(yan)究表明,一(yi)方(fang)面(mian)(mian)在(zai)高(gao)(gao)壓熱處(chu)理(li)(li)過程(cheng)(cheng)中(zhong),超高(gao)(gao)壓力會(hui)使合(he)金(jin)(jin)(jin)產生(sheng)內(nei)應力、基體(ti)組(zu)織中(zhong)產生(sheng)大(da)量位(wei)錯(cuo)[20],這(zhe)為固體(ti)相(xiang)(xiang)變過程(cheng)(cheng)中(zhong)新相(xiang)(xiang)的(de)形核(he)提供了更多的(de)位(wei)置(zhi),提高(gao)(gao)了晶核(he)的(de)成核(he)率[21]。另一(yi)方(fang)面(mian)(mian),超高(gao)(gao)壓力會(hui)降低(di)原子(zi)的(de)擴散系數,抑制晶核(he)長大(da)[22]。故在(zai)經過高(gao)(gao)壓熱處(chu)理(li)(li)后的(de)TC11鈦(tai)合(he)金(jin)(jin)(jin)內(nei),出現(xian)了細(xi)條狀α相(xiang)(xiang),組(zu)織有(you)所細(xi)化(hua)。

2.2高(gao)壓熱(re)處理后TC11鈦(tai)合金力學性能

2.2.1抗(kang)塑性變形能(neng)力

TC11鈦(tai)合(he)金在(zai)常壓(ya)(ya)(ya)(ya)(ya)(ya)(ya)和(he)高壓(ya)(ya)(ya)(ya)(ya)(ya)(ya)熱(re)處理(li)(li)后(hou)納(na)(na)(na)米壓(ya)(ya)(ya)(ya)(ya)(ya)(ya)痕(hen)(hen)(hen)載荷與納(na)(na)(na)米壓(ya)(ya)(ya)(ya)(ya)(ya)(ya)痕(hen)(hen)(hen)深(shen)度(du)(du)之間的(de)關(guan)(guan)系如圖6所示。可以(yi)(yi)看出,常壓(ya)(ya)(ya)(ya)(ya)(ya)(ya)熱(re)處理(li)(li)和(he)3GPa高壓(ya)(ya)(ya)(ya)(ya)(ya)(ya)熱(re)處理(li)(li)后(hou)的(de)TC11鈦(tai)合(he)金在(zai)納(na)(na)(na)米壓(ya)(ya)(ya)(ya)(ya)(ya)(ya)痕(hen)(hen)(hen)結(jie)(jie)果曲線上均出現了(le)一個平臺(tai),表(biao)明(ming)合(he)金發生了(le)蠕變(bian)現象。常壓(ya)(ya)(ya)(ya)(ya)(ya)(ya)熱(re)處理(li)(li)和(he)3GPa高壓(ya)(ya)(ya)(ya)(ya)(ya)(ya)熱(re)處理(li)(li)后(hou)TC11鈦(tai)合(he)金納(na)(na)(na)米壓(ya)(ya)(ya)(ya)(ya)(ya)(ya)痕(hen)(hen)(hen)結(jie)(jie)果如表(biao)2所示。在(zai)相(xiang)同載荷下,3GPa高壓(ya)(ya)(ya)(ya)(ya)(ya)(ya)熱(re)處理(li)(li)后(hou)TC11鈦(tai)合(he)金的(de)硬(ying)度(du)(du)、彈(dan)性模量(liang)分別為5.19HV和(he)128.04GPa,均高于常壓(ya)(ya)(ya)(ya)(ya)(ya)(ya)熱(re)處理(li)(li)后(hou)TC11鈦(tai)合(he)金試(shi)樣的(de)4.06HV和(he)115.68GPa。而(er)經3GPa高壓(ya)(ya)(ya)(ya)(ya)(ya)(ya)熱(re)處理(li)(li)后(hou),TC11鈦(tai)合(he)金的(de)蠕變(bian)量(liang)、最大(da)壓(ya)(ya)(ya)(ya)(ya)(ya)(ya)痕(hen)(hen)(hen)深(shen)度(du)(du)和(he)卸(xie)載后(hou)殘留壓(ya)(ya)(ya)(ya)(ya)(ya)(ya)痕(hen)(hen)(hen)深(shen)度(du)(du)均小于常壓(ya)(ya)(ya)(ya)(ya)(ya)(ya)熱(re)處理(li)(li)后(hou)TC11鈦(tai)合(he)金試(shi)樣的(de)。相(xiang)關(guan)(guan)研究表(biao)明(ming),納(na)(na)(na)米壓(ya)(ya)(ya)(ya)(ya)(ya)(ya)痕(hen)(hen)(hen)實驗卸(xie)載后(hou)的(de)殘余壓(ya)(ya)(ya)(ya)(ya)(ya)(ya)痕(hen)(hen)(hen)深(shen)度(du)(du)可以(yi)(yi)表(biao)征合(he)金的(de)抗(kang)塑性變(bian)形(xing)能力(li),殘余壓(ya)(ya)(ya)(ya)(ya)(ya)(ya)痕(hen)(hen)(hen)深(shen)度(du)(du)越(yue)大(da),表(biao)示塑性變(bian)形(xing)越(yue)大(da)[23-24]。因此,3GPa高壓(ya)(ya)(ya)(ya)(ya)(ya)(ya)熱(re)處理(li)(li)可以(yi)(yi)提(ti)高TC11鈦(tai)合(he)金的(de)塑性與變(bian)形(xing)抗(kang)力(li)。

t6.jpg

2.2.2硬度

常壓(ya)(ya)(ya)和高(gao)(gao)(gao)壓(ya)(ya)(ya)熱(re)處理(li)(li)后(hou)TC11鈦合(he)金(jin)(jin)硬(ying)度(du)與(yu)壓(ya)(ya)(ya)力的(de)關(guan)系(xi)曲線(xian)如圖7所(suo)(suo)示,其中0GPa代表常壓(ya)(ya)(ya)熱(re)處理(li)(li)。可以(yi)明(ming)顯看(kan)出,經高(gao)(gao)(gao)壓(ya)(ya)(ya)熱(re)處理(li)(li)后(hou),合(he)金(jin)(jin)的(de)硬(ying)度(du)高(gao)(gao)(gao)于常壓(ya)(ya)(ya)退火處理(li)(li)TC11鈦合(he)金(jin)(jin)的(de)硬(ying)度(du)(335HV)。當壓(ya)(ya)(ya)力為1~5GPa時(shi),隨著(zhu)壓(ya)(ya)(ya)力的(de)增(zeng)大,TC11鈦合(he)金(jin)(jin)的(de)硬(ying)度(du)有所(suo)(suo)增(zeng)大,但(dan)超過3GPa以(yi)后(hou),合(he)金(jin)(jin)的(de)硬(ying)度(du)基本沒有明(ming)顯變化。由測試結果(guo)可知,經3GPa高(gao)(gao)(gao)壓(ya)(ya)(ya)熱(re)處理(li)(li)后(hou),TC11鈦合(he)金(jin)(jin)的(de)硬(ying)度(du)為378HV,較相同加熱(re)溫度(du)和保溫時(shi)間的(de)常壓(ya)(ya)(ya)熱(re)處理(li)(li)的(de)硬(ying)度(du)(335HV)提高(gao)(gao)(gao)了12.84%。

2.2.3抗壓強度

TC11鈦(tai)合金(jin)(jin)(jin)抗壓(ya)(ya)(ya)(ya)強(qiang)度(du)與壓(ya)(ya)(ya)(ya)力的(de)(de)關系如圖8所示。可(ke)以看(kan)到(dao),高(gao)(gao)壓(ya)(ya)(ya)(ya)熱處理(li)后(hou)合金(jin)(jin)(jin)的(de)(de)室(shi)溫(wen)(wen)和(he)高(gao)(gao)溫(wen)(wen)抗壓(ya)(ya)(ya)(ya)強(qiang)度(du)均高(gao)(gao)于(yu)常壓(ya)(ya)(ya)(ya)熱處理(li)后(hou)合金(jin)(jin)(jin)的(de)(de)室(shi)溫(wen)(wen)和(he)高(gao)(gao)溫(wen)(wen)抗壓(ya)(ya)(ya)(ya)強(qiang)度(du)。當壓(ya)(ya)(ya)(ya)力為(wei)(wei)1~5GPa時,隨(sui)著壓(ya)(ya)(ya)(ya)力的(de)(de)增大,TC11鈦(tai)合金(jin)(jin)(jin)的(de)(de)室(shi)溫(wen)(wen)和(he)高(gao)(gao)溫(wen)(wen)抗壓(ya)(ya)(ya)(ya)強(qiang)度(du)變化不(bu)明(ming)顯。由實驗結果(guo)可(ke)知,經3GPa熱處理(li)后(hou),TC11鈦(tai)合金(jin)(jin)(jin)的(de)(de)室(shi)溫(wen)(wen)抗壓(ya)(ya)(ya)(ya)強(qiang)度(du)和(he)400℃抗壓(ya)(ya)(ya)(ya)強(qiang)度(du)分別為(wei)(wei)1610MPa和(he)1442MPa,分別較相同(tong)加熱溫(wen)(wen)度(du)和(he)保溫(wen)(wen)時間的(de)(de)常壓(ya)(ya)(ya)(ya)退(tui)火處理(li)的(de)(de)室(shi)溫(wen)(wen)抗壓(ya)(ya)(ya)(ya)強(qiang)度(du)(1465MPa)和(he)400℃抗壓(ya)(ya)(ya)(ya)強(qiang)度(du)(1328MPa)提高(gao)(gao)了9.89%和(he)8.58%。

b2-t7-t8.jpg

常壓(ya)(ya)和(he)高(gao)壓(ya)(ya)熱處理后(hou)TC11鈦(tai)合金(jin)(jin)室(shi)溫(wen)壓(ya)(ya)縮(suo)斷口(kou)形(xing)貌如(ru)圖(tu)9所示。可以看出,與(yu)常壓(ya)(ya)熱處理后(hou)的(de)相比,3GPa高(gao)壓(ya)(ya)熱處理后(hou)的(de)TC11鈦(tai)合金(jin)(jin)斷口(kou)平整(zheng),斷口(kou)中的(de)韌窩數量(liang)明顯減少(shao),韌窩深度(du)也顯著降(jiang)低。這也佐證了3GPa高(gao)壓(ya)(ya)熱處理后(hou)TC11鈦(tai)合金(jin)(jin)的(de)強度(du)較(jiao)常壓(ya)(ya)熱處理后(hou)的(de)強度(du)高(gao)。

t9.jpg

2.3組(zu)織與性能(neng)相關性

對高(gao)(gao)壓(ya)熱處(chu)(chu)理(li)可以改善TC11鈦合(he)金(jin)(jin)(jin)力(li)學性(xing)能(neng)(neng)的(de)(de)原(yuan)因進行分(fen)析。研(yan)究(jiu)表明,一方面,經(jing)高(gao)(gao)壓(ya)熱處(chu)(chu)理(li)后,合(he)金(jin)(jin)(jin)組(zu)織內部(bu)存在(zai)比常壓(ya)熱處(chu)(chu)理(li)更高(gao)(gao)的(de)(de)位錯(cuo)密(mi)度(du)(du)[25],在(zai)位錯(cuo)運動過程(cheng)中更容易發(fa)生位錯(cuo)之(zhi)間的(de)(de)交割和相互纏結,從而造(zao)成位錯(cuo)塞(sai)積,產生加工硬(ying)化效(xiao)果,提高(gao)(gao)合(he)金(jin)(jin)(jin)的(de)(de)強度(du)(du)和硬(ying)度(du)(du)力(li)學性(xing)能(neng)(neng)。另一方面,高(gao)(gao)壓(ya)熱處(chu)(chu)理(li)可以抑制元素(su)擴(kuo)散(san)速率(lv)[26],細化TC11鈦合(he)金(jin)(jin)(jin)微觀組(zu)織,組(zu)織細化將會使(shi)塑性(xing)變形更均勻,有效(xiao)減少內應力(li)集中,更有利于提高(gao)(gao)合(he)金(jin)(jin)(jin)塑性(xing)。綜上所述,經(jing)過高(gao)(gao)壓(ya)熱處(chu)(chu)理(li)后,TC11鈦合(he)金(jin)(jin)(jin)的(de)(de)抗塑性(xing)變形能(neng)(neng)力(li)、硬(ying)度(du)(du)和抗壓(ya)強度(du)(du)等力(li)學性(xing)能(neng)(neng)得到了一定(ding)的(de)(de)提升。

3、結論

研(yan)究了高壓熱處理(li)對(dui)TC11鈦合金微(wei)觀組織和力學性能的影響,得到以下結論:

1)經過高(gao)壓熱處(chu)理后,TC11鈦合金的(de)抗(kang)塑性變形能(neng)力(li)、硬度和(he)抗(kang)壓強(qiang)度均在(zai)一(yi)定程(cheng)度上有所提高(gao)。當TC11鈦合金經3GPa壓力(li)、1000℃保溫20min熱處(chu)理后,硬度、室溫抗(kang)壓強(qiang)度和(he)400℃抗(kang)壓強(qiang)度分別為378HV、1610MPa和(he)1442MPa,較相同工藝常壓熱處(chu)理后的(de)分別提高(gao)了12.84%、9.89%和(he)8.58%。

2)對高壓(ya)熱(re)處理改(gai)善TC11鈦(tai)合(he)金(jin)(jin)力學(xue)性(xing)能的(de)機制進(jin)行分析,結果(guo)表明,高壓(ya)熱(re)處理可以細化TC11鈦(tai)合(he)金(jin)(jin)組(zu)織,增大基體的(de)位錯(cuo)密度,從而提高了TC11鈦(tai)合(he)金(jin)(jin)的(de)綜(zong)合(he)力學(xue)性(xing)能。

參考文獻:

[1]LIU C, XIE L C, QIAN D S, et al. Microstructure Evo-lution and Mechanical Property Response of TC11 Tita-nium Alloy under Electroshock Treatment[J]. Material and Design, 2021, 198: 109322.

[2]羅燦, 張(zhang)臣, 趙志(zhi)遠, 等. 振(zhen)蕩激光掃描路徑對(dui) TC11鈦合金焊接組織性能(neng)的影響(xiang)[J]. 精(jing)密成形工程, 2023,15(3): 9-18.

LUO Can, ZHANG Chen, ZHAO Zhi-yuan, et al. Effect of Oscillating Laser Scanning Path on Microstructure and Properties of TC11 Titanium Alloy in Welding[J]. Journal of Netshape Forming Engineering, 2023, 15(3):9-18.

[3]宗影(ying)影(ying), 王琪偉, 袁林(lin), 等. 航空(kong)航天(tian)復雜(za)構件的(de)精(jing)密塑性體積(ji)成形技(ji)術(shu)[J]. 鍛(duan)壓技(ji)術(shu), 2021, 46(9): 1-15.

ZONG Ying-ying, WANG Qi-wei, YUAN Lin, et al.Precision Plastic Volume Forming Technology for Aerospace Complex Components[J]. Forging and Stamping Technology, 2021, 46(9): 1-15.

[4]QU B X, LU L X, WANG Q S, et al. Mechanical Properties of TC11 Titanium Alloy and Graphene Nanoplatelets/TC11 Composites Prepared by Selective Laser Melting[J]. International Journal of Molecular Sciences, 2022, 23(11): 6134.

[5]PANG X T, YAO C W, XIONG Z H, et al. Comparative Study of Coatings With Different Molybdenum Equiva-lent on Titanium Alloy Forged Plate for Laser Cladding:Microstructure and Mechanical Properties[J]. Surface and Coatings Technology, 2022, 446: 128760.

[6]GU Y, ZENG F H, QI Y L, et al. Tensile Creep Behavior of Heat-Treated TC11 Titanium Alloy at 450-550 De-grees C[J].Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2013, 575: 78-85.

[7]ZHOU Y, WANG K, SUN Z G, et al. Simultaneous Im-provement of Strength and Elongation of Laser Melting Deposited Ti-6Al-4V Titanium Alloy through Three-stage Heat Treatment[J]. Journal of Materials Processing Technology, 2022, 306: 117607.

[8]HAO Y B, HUANG Y L, ZHAO K, et al. Research on the Microstructure and Mechanical Properties of Dou-bled Annealed Laser Melting Deposition TC11 Titanium Alloy[J]. Optics and Laser Technology, 2022, 150:107983.

[9]朱(zhu)寧遠, 陳世(shi)豪(hao), 廖強, 等. 固溶(rong)時效(xiao)處理對 TC11 鈦合(he)金顯微(wei)組織和硬(ying)度(du)的影(ying)響[J]. 金屬熱(re)處理, 2022,47(12): 62-66.

ZHU Ning-yuan, CHEN Shi-hao, LIAO Qiang, et al.Effect of Solution Aging Treatment on Microstructure and Hardness of TC11 Titanium Alloy[J]. Heat Treat-ment of Metals, 2022, 47(12): 62-66.

[10] 白鷺, 張(zhang)小娟, 周鐘平, 等. 時效(xiao)對熱旋壓 TC11 鈦合金組(zu)織(zhi)及性能的影響[J]. 金屬熱處理, 2021, 46(7):126-130.

BAI Lu, ZHANG Xiao-juan, ZHOU Zhong-ping, et al.Effect of Aging on Microstructure and Properties of Hot-spun TC11 Titanium Alloy[J]. Heat Tratment of Metals, 2021, 46(7): 126-130.

[11] 楊小禹, 李笑(xiao)笑(xiao), 佟靜(jing), 等(deng). 高壓(ya)熱(re)處理對 35CrMo 鋼組(zu) 織 與 硬(ying) 度 的(de) 影 響 [J]. 金(jin) 屬(shu) 熱(re) 處 理 , 2022, 47(6):119-122.

YANG Xiao-yu, LI Xiao-xiao, TONG Jing, et al. Effect of High Pressure Heat Treatment on Microstructure and Hardness of 35CrMo Steel[J]. Heat Treatment of Metals,2022, 47(6): 119-122.

[12] 張大磊(lei), 李媛媛. 高壓熱處理對 TC9 鈦合金顯微組織(zhi)和力學性(xing)能(neng)的(de)影(ying)響[J]. 機械工程材料, 2021, 45(8):72-76.

ZHANG Da-lei, LI Yuan-yuan. Effect of High Pressure Heat Treatment on Microstructure and Mechanical Properties of TC9 Titanium Alloy[J]. Materials for Me-chanical Engineering, 2021, 45(8): 72-76.

[13] DU P, SUN H Y, WANG Z J, et al. Effect of High Pres-sure Heat Treatment on the Recrystallization and Re-crystallization Texture of CC AA 3003 Aluminum Al-loy[J]. Journal of Materials Research and Technology,2022, 19: 2388-2401.

[14] GU T, ZHANG S X, ZHAO Y H, et al. Effect of High-Pressure Aging Treatment on Microstructure and Properties of Cu-51.15 W-0.24 Cr Alloy[J]. Rare Metal

Materials and Engineering, 2021, 50(12): 4224-4229.

[15] DU P, SUN H Y, KONG L W, et al. A Study on Recrys-tallization Behavior and Recrystallization Texture of High Pressure Heat-treated Al-Mg Alloy[J]. Journal of Materials Science, 2023, 58: 2876-2892.

[16] GU T, LI J W, XU F Q, et al. Effect of High Temperature-high Pressure Treatment on Microstructure and Mechanical Properties of Cu-Cr Alloy[J]. Materials Research Express, 2020, 7: 026505.

[17] WEI Z J, JIANG W, ZOU C M, et al. Microstructural Evolution and Mechanical Strengthening Mechanism of the High Pressure Heat Treatment (HPHT) on Al-Mg Alloy[J]. Journal of Alloys and Compounds, 2017, 692:629-633.

[18] 劉建(jian)強, 諶(chen)巖(yan), 曹棟, 等. 高壓熱(re)處(chu)理對 TC6 鈦合金塑 變 抗 力 的(de) 影 響(xiang) [J]. 熱(re) 加 工 工 藝 , 2015, 44(20):176-177.

LIU Jian-qiang, CHEN Yan, CAO Dong, et al. Effect of High Pressure Heat Treatment on Plasticizing Resis-tance of TC6 Titanium Alloy[J]. Hot Working Technol-ogy, 2015, 44(20): 176-177.

[19] 同曉樂, 張(zhang)明玉, 岳(yue)旭, 等. 固溶處(chu)理對 TC11 鈦合(he)金(jin)組(zu) 織 與 性 能 的 影 響 [J]. 金(jin) 屬 熱 處(chu) 理 , 2023, 48(2):195-200.

TONG Xiao-le, ZHANG Ming-yu, YUE Xu, et al. Ef-fect of Solution Treatment on Microstructure and Prop-erties of TC11 Titanium Alloy[J]. Heat Treatment of Metals, 2023, 48(2): 195-200.

[20] GU T, ZHANG S X, ZHAO Y H, et al. Novel Method to Improve the Microstructure and Mechanical Properties of 45 Steel[J]. Metals and Materials International, 2021,28(4): 833-840.

[21] GU T, XU F Q, ZHAO Y H, et al. Effects of High Pres-sure Heat Treatment on Microstructure and Mechanical Properties of Aluminum Bronze[J]. Materials Research Express, 2019, 6: 096508.

[22] 陳久川, 米新蘭, 張晗, 等. 高壓熱處理對低碳鋼組織 和 硬(ying) 度 的 影 響 [J]. 熱 加 工(gong)(gong) 工(gong)(gong) 藝(yi) , 2018, 47(12):130-131.

CHEN Jiu-chuan, MI Xin-la, ZHANG Han, et al. Effects of High Pressure Heat Treatment on Microstructure and Hardness of Low Carbon Steel[J]. Hot Working Tech- nology, 2018, 47(12): 130-131.

[23] SUN Y, ZHAO G F, WEN X Y, et al. Nanoindentation Deformation of a Bi-phase AlCrCuFeNi2 Alloy[J].Journal of Alloys and Compounds, 2014, 608: 49-53.

[24] PI J H, WANG Z Z, HE X C, et al. Nanoindentation Mechanical Properties of a Bi-phase Cu29Zr32Ti15Al5Ni19 Alloy[J]. Journal of Materials En-gineering and Performance, 2016, 25: 76-82.

[25] WANG Y H, ZHAO J, LIU J H, et al. Effect of High Pressure Heat Treatment on Microstructures and Mi-cro-mechanical Properties of CuZn Alloy[J]. High Temperature Materials and Processes, 2014, 33:339-344.

[26] MA Y Q, LI J M, LIN H J. Effects of 4 GPa Pressure Heat Treatment on Micro-Mechanical Properties of Brass by Nanoindentation[J]. Materials Transactions, 2014, 55(7): 1065-1068.

在線客服
客(ke)服電話

全國免費服務熱線
0917 - 3388692
掃一(yi)掃

jenota.com.cn
利泰金屬手機網

返(fan)回(hui)頂部

↑