亚洲中文字幕一区精品自拍_国产精品VA在线观看无码_翁吻乳婷婷小玲21章_久久久久久久精品国产亚洲87

海洋環境鈦合金的應用現狀及其防護技術研究

發布時間: 2023-11-15 09:57:19    瀏覽次數:

海(hai)(hai)(hai)(hai)洋(yang)(yang)(yang)(yang)具(ju)(ju)有(you)潛在的(de)(de)(de)(de)(de)巨大經濟利益和(he)戰(zhan)略性(xing)(xing)(xing)地位(wei)。開發(fa)(fa)海(hai)(hai)(hai)(hai)洋(yang)(yang)(yang)(yang)資源(yuan),必須要(yao)發(fa)(fa)展(zhan)重大海(hai)(hai)(hai)(hai)洋(yang)(yang)(yang)(yang)工程裝備(bei),而海(hai)(hai)(hai)(hai)洋(yang)(yang)(yang)(yang)新材(cai)(cai)(cai)(cai)料將在其(qi)中(zhong)發(fa)(fa)揮關鍵性(xing)(xing)(xing)作用,是海(hai)(hai)(hai)(hai)洋(yang)(yang)(yang)(yang)產(chan)業的(de)(de)(de)(de)(de)基礎和(he)支(zhi)撐。我國海(hai)(hai)(hai)(hai)洋(yang)(yang)(yang)(yang)材(cai)(cai)(cai)(cai)料開發(fa)(fa)剛剛起(qi)步,缺乏海(hai)(hai)(hai)(hai)洋(yang)(yang)(yang)(yang)材(cai)(cai)(cai)(cai)料體系建(jian)設和(he)選(xuan)材(cai)(cai)(cai)(cai)標(biao)準,材(cai)(cai)(cai)(cai)料問題已(yi)成為我國海(hai)(hai)(hai)(hai)洋(yang)(yang)(yang)(yang)工程裝備(bei)發(fa)(fa)展(zhan)中(zhong)的(de)(de)(de)(de)(de)主要(yao)瓶頸。鈦(tai)金(jin)(jin)(jin)屬(shu)(shu)(shu)走(zou)向工業化始(shi)于 20世紀 50 年(nian)代美國杜邦公(gong)司(si)首先(xian)采用克勞爾(Kroll)法(fa)商業化生產(chan)金(jin)(jin)(jin)屬(shu)(shu)(shu)鈦(tai),被稱為繼(ji)鐵和(he)鋁之后必將崛(jue)起(qi)的(de)(de)(de)(de)(de)第三金(jin)(jin)(jin)屬(shu)(shu)(shu)。鈦(tai)金(jin)(jin)(jin)屬(shu)(shu)(shu)最突出的(de)(de)(de)(de)(de)特(te)點是密度(du)(du)低、比強(qiang)度(du)(du)高(gao)、耐蝕性(xing)(xing)(xing)能(neng)強(qiang),同時(shi)還具(ju)(ju)有(you)高(gao)透聲系數(shu)、優異的(de)(de)(de)(de)(de)中(zhong)子輻照衰減性(xing)(xing)(xing)能(neng)、無磁性(xing)(xing)(xing)和(he)無冷(leng)脆性(xing)(xing)(xing)。鈦(tai)金(jin)(jin)(jin)屬(shu)(shu)(shu)的(de)(de)(de)(de)(de)基本物(wu)理(li)性(xing)(xing)(xing)質與其(qi)他金(jin)(jin)(jin)屬(shu)(shu)(shu)比較(jiao)見表 1。

b1.jpg

鈦金(jin)屬是一(yi)種(zhong)高鈍(dun)化性(xing)金(jin)屬,可鈍(dun)化性(xing)超(chao)過鋁、鉻、鎳(nie)和不銹鋼。而且(qie)鈦的致(zhi)鈍(dun)電位低,臨界(jie)鈍(dun)化電流小,鈍(dun)化電位區寬達 20 V,鈍(dun)態穩定性(xing)很強,不受氯離(li)子破(po)壞(huai)(huai)。鈦的鈍(dun)化膜(mo)具有非常(chang)好的自(zi)愈合性(xing),當其破(po)壞(huai)(huai)后能(neng)迅速(su)自(zi)動修復,形(xing)成新的鈍(dun)化保護膜(mo)。

鈦金(jin)屬在海水和海洋大氣環境(jing)中(zhong)具有極(ji)高的(de)抗(kang)蝕(shi)(shi)性能,其抗(kang)蝕(shi)(shi)性能遠優于(yu)鋁(lv)合金(jin)、不銹鋼和鎳基合金(jin),被(bei)稱為“海洋金(jin)屬”。海水環境(jing)中(zhong)鈦表面發生氧(yang)化(hua)反(fan)應形(xing)成鈍化(hua)膜的(de)反(fan)應如式(1)所示,轉移的(de)電子(zi)被(bei)氧(yang)化(hua)劑如質子(zi)、溶解氧(yang)和水反(fan)應消耗,即陰極(ji)反(fan)應如式(2)—(4)和圖 1 所示。

Ti+2H2O→TiO2+4H++4e-(1)

2H++2e-→H2(2)

O2+2H2O+4e-→4OH-(3)

H2O+2e-→2OH-+H2(4)

t1.jpg

針對海洋環境開發設計和應用的鈦金屬材料,更加強調耐海水腐蝕性能、良好的焊接性能、無磁性能、高比強度和低成本。目前海洋環境中應用的鈦合金主要(yao)應(ying)用于如下(xia)(xia)領(ling)域:1)船舶、深潛器等(deng)設備中(zhong)的耐(nai)壓殼(ke)體、動力系(xi)(xi)統(tong)(蒸汽發(fa)生(sheng)器、螺(luo)(luo)旋槳和螺(luo)(luo)旋槳軸(zhou))、熱交換器、冷(leng)凝器、通(tong)海(hai)(hai)(hai)管(guan)路系(xi)(xi)統(tong)、聲吶系(xi)(xi)統(tong)、泵(beng)(beng)閥(fa)(fa)系(xi)(xi)統(tong)和通(tong)信系(xi)(xi)統(tong)等(deng);2)海(hai)(hai)(hai)上油氣勘探與開發(fa),主要(yao)有鉆井(jing)立(li)管(guan)、錐形(xing)應(ying)力接頭(tou)、鉆管(guan)和井(jing)下(xia)(xia)作業流(liu)送管(guan)路等(deng);3)海(hai)(hai)(hai)洋(yang)能(neng)源開發(fa)和利用,涉(she)及(ji)海(hai)(hai)(hai)水潮汐能(neng)發(fa)電機組部件(jian),海(hai)(hai)(hai)水溫差發(fa)電機組的冷(leng)凝器、蒸發(fa)器、管(guan)路和泵(beng)(beng)閥(fa)(fa)系(xi)(xi)統(tong);4)海(hai)(hai)(hai)水淡(dan)化裝置及(ji)濱(bin)海(hai)(hai)(hai)建筑,主要(yao)有熱交換器、冷(leng)凝器、管(guan)路系(xi)(xi)統(tong)等(deng)。濱(bin)海(hai)(hai)(hai)建筑或(huo)跨海(hai)(hai)(hai)大橋橋基采用鈦-鋼復合板進行(xing)耐(nai)腐蝕防護。海(hai)(hai)(hai)洋(yang)環境應(ying)用鈦合金的關鍵部件(jian)和牌(pai)號如表 2 所示[1,3]。

隨著我(wo)國海(hai)(hai)洋(yang)經濟(ji)開(kai)發(fa)和海(hai)(hai)洋(yang)國土安(an)(an)全的(de)(de)(de)發(fa)展(zhan)與需求(qiu),海(hai)(hai)洋(yang)材料與裝(zhuang)備(bei)是(shi)拓(tuo)展(zhan)海(hai)(hai)洋(yang)空間、開(kai)發(fa)海(hai)(hai)洋(yang)資源和維護海(hai)(hai)洋(yang)權益的(de)(de)(de)物質前提(ti)。鈦金(jin)屬因其優異的(de)(de)(de)綜合(he)性能(neng)在海(hai)(hai)洋(yang)裝(zhuang)備(bei)中將應用越來(lai)越廣泛,對提(ti)高裝(zhuang)備(bei)作(zuo)業能(neng)力(li)、安(an)(an)全性和可(ke)靠性具有重(zhong)要意義,是(shi)建設海(hai)(hai)洋(yang)強國的(de)(de)(de)重(zhong)要戰(zhan)略材料之(zhi)一。但嚴酷海(hai)(hai)洋(yang)環(huan)境(jing)(jing)中服(fu)役的(de)(de)(de)鈦合(he)金(jin)在特(te)定(ding)的(de)(de)(de)應用環(huan)境(jing)(jing)中也存在一些問題,必(bi)須引起足夠重(zhong)視和做好預防處理(li)。

b2.jpg

1、 鈦合金運動部件磨蝕損傷及其防護技術

1.1 鈦合金磨蝕損(sun)傷行為

鈦(tai)(tai)(tai)金(jin)(jin)屬(shu)兼具鋼(gang)的(de)(de)(de)(de)強度(du)高和(he)鋁(lv)的(de)(de)(de)(de)質地輕的(de)(de)(de)(de)優點(dian),但(dan)鈦(tai)(tai)(tai)合(he)金(jin)(jin)難(nan)加工和(he)耐磨(mo)(mo)(mo)(mo)性能差(cha)(cha)。耐磨(mo)(mo)(mo)(mo)性能差(cha)(cha)的(de)(de)(de)(de)主要原因是鈦(tai)(tai)(tai)合(he)金(jin)(jin)硬(ying)(ying)度(du)低(di)和(he)塑性剪切應力(li)低(di),表面(mian)加工硬(ying)(ying)化(hua)能力(li)差(cha)(cha)[4]。鈦(tai)(tai)(tai)的(de)(de)(de)(de)導(dao)(dao)熱系(xi)數為 0.041 cal/(cm·s·℃),遠小于鋼(gang)的(de)(de)(de)(de) 0.19 cal/(cm·s·℃),導(dao)(dao)致(zhi)摩擦過程中(zhong)閃溫(wen)和(he)熱量難(nan)以快速(su)釋放,進而導(dao)(dao)致(zhi)材料黏(nian)性增大,極易發生黏(nian)著(zhu)(zhu)磨(mo)(mo)(mo)(mo)損(sun)。鈦(tai)(tai)(tai)合(he)金(jin)(jin)的(de)(de)(de)(de)彈(dan)性模量低(di),約為鋼(gang)鐵(tie)的(de)(de)(de)(de) 50%,硬(ying)(ying)彈(dan)比明(ming)顯低(di)于鋼(gang)鐵(tie)材料,也(ye)是其耐磨(mo)(mo)(mo)(mo)性能差(cha)(cha)的(de)(de)(de)(de)一(yi)個原因。海(hai)(hai)洋(yang)環境(jing)使役的(de)(de)(de)(de)鈦(tai)(tai)(tai)合(he)金(jin)(jin)運動部件大多承受海(hai)(hai)水和(he)海(hai)(hai)洋(yang)大氣腐蝕,海(hai)(hai)水、泥沙和(he)鹽霧等(deng)介質環境(jing)對鈦(tai)(tai)(tai)合(he)金(jin)(jin)耐磨(mo)(mo)(mo)(mo)性能有顯著(zhu)(zhu)影響。鈦(tai)(tai)(tai)合(he)金(jin)(jin)優異(yi)的(de)(de)(de)(de)耐海(hai)(hai)水性能來自于表面(mian)形(xing)成(cheng)的(de)(de)(de)(de)鈍化(hua)膜,耐磨(mo)(mo)(mo)(mo)性能差(cha)(cha)的(de)(de)(de)(de)鈦(tai)(tai)(tai)合(he)金(jin)(jin)在(zai)摩擦磨(mo)(mo)(mo)(mo)損(sun)過程中(zhong)極易導(dao)(dao)致(zhi)鈍化(hua)膜移除,鈍化(hua)膜的(de)(de)(de)(de)移除速(su)度(du)大于自修(xiu)復速(su)度(du)就會導(dao)(dao)致(zhi)暴露于海(hai)(hai)洋(yang)環境(jing)的(de)(de)(de)(de)鈦(tai)(tai)(tai)合(he)金(jin)(jin)被(bei)加速(su)腐蝕,裸露的(de)(de)(de)(de)基體金(jin)(jin)屬(shu)和(he)磨(mo)(mo)(mo)(mo)屑中(zhong)的(de)(de)(de)(de)金(jin)(jin)屬(shu)會與(yu)未(wei)磨(mo)(mo)(mo)(mo)損(sun)鈍化(hua)層在(zai)介質環境(jing)中(zhong)形(xing)成(cheng)諸多原電(dian)池,同時磨(mo)(mo)(mo)(mo)損(sun)加速(su)界(jie)面(mian)金(jin)(jin)屬(shu)的(de)(de)(de)(de)活化(hua),大大促(cu)進基體金(jin)(jin)屬(shu)的(de)(de)(de)(de)腐蝕。腐

蝕(shi)導致金屬表面產生(sheng)疏(shu)松(song)的氧(yang)化物,進一步加速材料的磨(mo)損(sun)失(shi)效,形(xing)成腐蝕(shi)介質(zhi)特有的磨(mo)損(sun)與腐蝕(shi)交互作(zuo)用(yong)(yong)現象,如圖 2 所示。鈦(tai)合金運動部件(jian)的磨(mo)損(sun)腐蝕(shi)是其應用(yong)(yong)中最為關(guan)鍵的問題。

t2.jpg

相關研究顯示材料在力學和化學/電化學多因素交互作用下的損傷速率相比其單獨作用時會成倍增加,其主要原因是腐蝕能夠加速磨損,磨損也可以促進腐蝕,也就是說腐蝕和磨損呈“正交互”關系,二者協同作用加速了材料的失效和損耗。很多研究也證實鈦合金磨蝕的“正交互”關系[6]。鄭超等[7]研究了鈦合金在純水和 3.5%NaCl 溶液中的磨損腐蝕行為,發現腐蝕和磨損交互作用加速了材料流失。Dong 等[8-9]研究發現,鈦合金在摩擦啟動后開路電位迅速降低并趨于保持一個穩定的低值,當摩擦結束后,開路電位重新升高回到摩擦啟動前的數值。這說明了摩擦導致鈦合金表面鈍化膜的移除,并且在摩擦過程中鈍化膜并沒有完成修復。當摩擦啟動后,鈦合金的腐蝕電流由 1.733×10-7 A/cm2 迅速增加到 1.994×10-5 A/cm2,腐蝕電流增(zeng)加(jia)了(le) 2 個數量級(ji),說明(ming)磨(mo)損(sun)對腐蝕有(you)明(ming)顯的(de)促進(jin)作(zuo)(zuo)用(yong)。王林青等[10]研究也發現,摩擦(ca)導(dao)致開路電位(wei)下(xia)降(jiang)和(he)腐蝕電流呈數量級(ji)增(zeng)加(jia)的(de)現象(見圖 3),研究還顯示磨(mo)損(sun)腐蝕交互(hu)作(zuo)(zuo)用(yong)導(dao)致材(cai)(cai)料較高的(de)磨(mo)損(sun)率,隨外加(jia)電位(wei)增(zeng)加(jia),磨(mo)損(sun)腐蝕交互(hu)作(zuo)(zuo)用(yong)所(suo)占總(zong)材(cai)(cai)料損(sun)失的(de)比例由(you) 12%增(zeng)加(jia)到 66%。

t3.jpg

相(xiang)(xiang)(xiang)關研(yan)究(jiu)報道也發現(xian)(xian)磨(mo)(mo)(mo)損(sun)(sun)(sun)和(he)(he)腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)出現(xian)(xian)所(suo)謂“負(fu)(fu)(fu)交互(hu)(hu)”關系,即腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)和(he)(he)磨(mo)(mo)(mo)損(sun)(sun)(sun)協同作(zuo)用(yong)(yong)減少了材(cai)(cai)料損(sun)(sun)(sun)失(shi)量。丁紅燕等[11]研(yan)究(jiu)發現(xian)(xian) TC11 鈦合金(jin)在(zai)海(hai)(hai)水中(zhong)微(wei)動磨(mo)(mo)(mo)損(sun)(sun)(sun),在(zai)載荷 20~40 N 的(de)(de)(de)(de)(de)情(qing)況下(xia)(xia)(xia)材(cai)(cai)料損(sun)(sun)(sun)失(shi)量小于(yu)純水中(zhong)的(de)(de)(de)(de)(de)損(sun)(sun)(sun)失(shi)量,磨(mo)(mo)(mo)損(sun)(sun)(sun)腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)呈現(xian)(xian)“負(fu)(fu)(fu)交互(hu)(hu)”規律(lv)。其原(yuan)因(yin)主要歸結(jie)為微(wei)動條件下(xia)(xia)(xia),海(hai)(hai)水中(zhong)硫、磷(lin)和(he)(he)氯等活性(xing)成分產生(sheng)(sheng)(sheng)膜(mo)層起(qi)(qi)到了減小摩擦(ca)和(he)(he)降(jiang)低磨(mo)(mo)(mo)損(sun)(sun)(sun)的(de)(de)(de)(de)(de)作(zuo)用(yong)(yong)。鈦合金(jin)磨(mo)(mo)(mo)損(sun)(sun)(sun)腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)諸多報道均表(biao)(biao)明(ming)(ming),在(zai)海(hai)(hai)水中(zhong)摩擦(ca)時(shi)鈦合金(jin)表(biao)(biao)面的(de)(de)(de)(de)(de)摩擦(ca)因(yin)數顯著(zhu)降(jiang)低[12],這主要是(shi)海(hai)(hai)水起(qi)(qi)到了明(ming)(ming)顯的(de)(de)(de)(de)(de)潤(run)(run)滑(hua)(hua)(hua)作(zuo)用(yong)(yong)。但海(hai)(hai)水的(de)(de)(de)(de)(de)潤(run)(run)滑(hua)(hua)(hua)是(shi)有(you)條件和(he)(he)有(you)限的(de)(de)(de)(de)(de),在(zai)特定的(de)(de)(de)(de)(de)載荷和(he)(he)工(gong)況下(xia)(xia)(xia)潤(run)(run)滑(hua)(hua)(hua)效(xiao)果明(ming)(ming)顯,重載高(gao)(gao)速或微(wei)動工(gong)況下(xia)(xia)(xia)潤(run)(run)滑(hua)(hua)(hua)效(xiao)果反而降(jiang)低。在(zai)鈦合金(jin)磨(mo)(mo)(mo)損(sun)(sun)(sun)腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)過(guo)程中(zhong)海(hai)(hai)水是(shi)把“雙刃劍”,即有(you)強腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)又有(you)潤(run)(run)滑(hua)(hua)(hua)效(xiao)果,總體(ti)上腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)起(qi)(qi)到更為重要作(zuo)用(yong)(yong)加速材(cai)(cai)料的(de)(de)(de)(de)(de)流失(shi)。腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)與(yu)磨(mo)(mo)(mo)損(sun)(sun)(sun)的(de)(de)(de)(de)(de)正、負(fu)(fu)(fu)交互(hu)(hu)作(zuo)用(yong)(yong)也不(bu)(bu)(bu)是(shi)一成不(bu)(bu)(bu)變(bian)(bian)的(de)(de)(de)(de)(de),它們往往會在(zai)不(bu)(bu)(bu)同的(de)(de)(de)(de)(de)材(cai)(cai)料、工(gong)況及(ji)介質環境(jing)等條件下(xia)(xia)(xia)相(xiang)(xiang)(xiang)互(hu)(hu)影響、過(guo)渡和(he)(he)轉(zhuan)換。Zhang 等[13]研(yan)究(jiu)了奧氏(shi)(shi)體(ti) 304 不(bu)(bu)(bu)銹(xiu)鋼在(zai)人工(gong)海(hai)(hai)水環境(jing)中(zhong)的(de)(de)(de)(de)(de)腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)與(yu)磨(mo)(mo)(mo)損(sun)(sun)(sun)交互(hu)(hu)作(zuo)用(yong)(yong)機制,發現(xian)(xian)摩擦(ca)磨(mo)(mo)(mo)損(sun)(sun)(sun)導致不(bu)(bu)(bu)銹(xiu)鋼表(biao)(biao)面奧氏(shi)(shi)體(ti)相(xiang)(xiang)(xiang)變(bian)(bian),形成了高(gao)(gao)強度馬(ma)氏(shi)(shi)體(ti)相(xiang)(xiang)(xiang),馬(ma)氏(shi)(shi)體(ti)和(he)(he)奧氏(shi)(shi)體(ti)間有(you)電(dian)(dian)位差會伴隨發生(sheng)(sheng)(sheng)微(wei)電(dian)(dian)偶腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)促進了微(wei)觀腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi),起(qi)(qi)到正交互(hu)(hu)作(zuo)用(yong)(yong)。腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)導致馬(ma)氏(shi)(shi)體(ti)溶解后,高(gao)(gao)硬度馬(ma)氏(shi)(shi)體(ti)形成會抑(yi)制磨(mo)(mo)(mo)損(sun)(sun)(sun),表(biao)(biao)明(ming)(ming)腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)與(yu)磨(mo)(mo)(mo)損(sun)(sun)(sun)之間產生(sheng)(sheng)(sheng)了負(fu)(fu)(fu)交互(hu)(hu)作(zuo)用(yong)(yong)。腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)過(guo)程阻止(zhi)了γ 相(xiang)(xiang)(xiang)鈍化膜(mo)的(de)(de)(de)(de)(de)形成,金(jin)屬表(biao)(biao)面潤(run)(run)滑(hua)(hua)(hua)性(xing)下(xia)(xia)(xia)降(jiang),再次加劇磨(mo)(mo)(mo)損(sun)(sun)(sun),腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)與(yu)磨(mo)(mo)(mo)損(sun)(sun)(sun)之間再次產生(sheng)(sheng)(sheng)正交互(hu)(hu)作(zuo)用(yong)(yong),304 不(bu)(bu)(bu)銹(xiu)鋼在(zai)整(zheng)個過(guo)程中(zhong)發生(sheng)(sheng)(sheng)了腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)與(yu)磨(mo)(mo)(mo)損(sun)(sun)(sun)的(de)(de)(de)(de)(de)正、負(fu)(fu)(fu)交互(hu)(hu)作(zuo)用(yong)(yong)的(de)(de)(de)(de)(de)過(guo)渡與(yu)轉(zhuan)換,如圖 4 所(suo)示。

t4.jpg

1.2 鈦合金耐磨(mo)蝕防護技術

為(wei)提高鈦(tai)(tai)(tai)金(jin)(jin)屬(shu)(shu)的(de)(de)(de)(de)耐磨性能,對鈦(tai)(tai)(tai)合(he)金(jin)(jin)進(jin)行(xing)表(biao)面(mian)強化處(chu)理(li)是行(xing)之有效的(de)(de)(de)(de)技(ji)(ji)(ji)術(shu)手段(duan)(duan),現有的(de)(de)(de)(de)表(biao)面(mian)處(chu)理(li)技(ji)(ji)(ji)術(shu)多(duo)數可(ke)以用于(yu)鈦(tai)(tai)(tai)金(jin)(jin)屬(shu)(shu)的(de)(de)(de)(de)表(biao)面(mian)強化。鈦(tai)(tai)(tai)金(jin)(jin)屬(shu)(shu)表(biao)面(mian)處(chu)理(li)技(ji)(ji)(ji)術(shu)的(de)(de)(de)(de)應用和(he)發(fa)展(zhan)大(da)致經歷了(le) 3 個(ge)階(jie)段(duan)(duan):第一階(jie)段(duan)(duan)是以電(dian)鍍、化學鍍和(he)熱擴散(滲氮滲碳等(deng)(deng))為(wei)代表(biao)的(de)(de)(de)(de)傳統表(biao)面(mian)技(ji)(ji)(ji)術(shu);第二階(jie)段(duan)(duan)是以等(deng)(deng)離(li)子(zi)體和(he)電(dian)子(zi)束涂層技(ji)(ji)(ji)術(shu)、激光(guang)表(biao)面(mian)強化、熱噴(pen)涂及微弧氧化技(ji)(ji)(ji)術(shu)等(deng)(deng)為(wei)標志(zhi)的(de)(de)(de)(de)現代表(biao)面(mian)處(chu)理(li)技(ji)(ji)(ji)術(shu);第三(san)階(jie)段(duan)(duan)是多(duo)種表(biao)面(mian)處(chu)理(li)技(ji)(ji)(ji)術(shu)復合(he)應用,表(biao)面(mian)改性層的(de)(de)(de)(de)多(duo)元、多(duo)層、梯度結構(gou)和(he)超厚等(deng)(deng)設計和(he)制備(bei),滿足高速、重載和(he)復雜介(jie)質苛(ke)刻環境鈦(tai)(tai)(tai)金(jin)(jin)屬(shu)(shu)的(de)(de)(de)(de)表(biao)面(mian)防護需求。

電鍍技術(shu)主要(yao)采用(yong)(yong)鍍鎳和硬(ying)(ying)(ying)鉻(ge)來提(ti)(ti)高(gao)(gao)鈦(tai)(tai)金(jin)屬(shu)耐磨性能(neng),但(dan)電鍍技術(shu)的(de)鍍層(ceng)硬(ying)(ying)(ying)度(du)(du)和結合強度(du)(du)不高(gao)(gao),而且容易產(chan)生氫脆。微(wei)弧氧(yang)(yang)化(hua)處理(li)(li)可(ke)以在鈦(tai)(tai)金(jin)屬(shu)表(biao)面原位形成(cheng)氧(yang)(yang)化(hua)鈦(tai)(tai)陶(tao)瓷層(ceng)來提(ti)(ti)高(gao)(gao)鈦(tai)(tai)合金(jin)的(de)耐磨性能(neng),涂(tu)層(ceng)厚度(du)(du)一般(ban)為(wei)(wei)幾十微(wei)米,但(dan)涂(tu)層(ceng)表(biao)面多孔,需要(yao)進行(xing)后續(xu)封孔處理(li)(li)。化(hua)學表(biao)面熱(re)處理(li)(li)方法主要(yao)有(you)滲(shen)(shen)氮(dan)(dan)、滲(shen)(shen)碳、滲(shen)(shen)氧(yang)(yang)和滲(shen)(shen)硼等(deng)技術(shu)。滲(shen)(shen)氮(dan)(dan)處理(li)(li)是最常(chang)用(yong)(yong)的(de)鈦(tai)(tai)金(jin)屬(shu)表(biao)面化(hua)學熱(re)處理(li)(li)方法,包括氣體(ti)(ti)滲(shen)(shen)氮(dan)(dan)、等(deng)離子滲(shen)(shen)氮(dan)(dan)和激光滲(shen)(shen)氮(dan)(dan)。鈦(tai)(tai)金(jin)屬(shu)氮(dan)(dan)化(hua)處理(li)(li)溫度(du)(du)比鋼鐵材料(liao)高(gao)(gao)很(hen)多,需要(yao)800 ℃以上(shang)溫度(du)(du)才能(neng)獲得足夠深度(du)(du)的(de)氮(dan)(dan)化(hua)物層(ceng),鈦(tai)(tai)金(jin)屬(shu)表(biao)面滲(shen)(shen)入的(de)氮(dan)(dan)元素,形成(cheng) α 相(xiang)和 α+β 相(xiang)的(de)氮(dan)(dan)和鈦(tai)(tai)固溶體(ti)(ti),最外層(ceng)形成(cheng)薄(bo)的(de)氮(dan)(dan)化(hua)鈦(tai)(tai)層(ceng)。氮(dan)(dan)化(hua)處理(li)(li)獲得硬(ying)(ying)(ying)化(hua)層(ceng)的(de)厚度(du)(du)一般(ban)不超(chao)過 200 μm,氮(dan)(dan)化(hua)層(ceng)的(de)硬(ying)(ying)(ying)度(du)(du)約為(wei)(wei) 10 GPa。

鈦(tai)(tai)金(jin)(jin)(jin)屬(shu)的滲(shen)碳(tan)(tan)處(chu)(chu)理(li)主(zhu)要采用(yong)等離子(zi)輝光滲(shen)碳(tan)(tan)和電(dian)火花放電(dian)滲(shen)碳(tan)(tan)。滲(shen)碳(tan)(tan)處(chu)(chu)理(li)的溫(wen)(wen)度更高(gao)(gao),在 900~11 00 ℃之間(jian),在鈦(tai)(tai)表(biao)面(mian)(mian)形成碳(tan)(tan)化(hua)(hua)(hua)鈦(tai)(tai)的硬化(hua)(hua)(hua)層。鈦(tai)(tai)金(jin)(jin)(jin)屬(shu)化(hua)(hua)(hua)學表(biao)面(mian)(mian)熱(re)處(chu)(chu)理(li)溫(wen)(wen)度高(gao)(gao),處(chu)(chu)理(li)時(shi)間(jian)長,高(gao)(gao)溫(wen)(wen)長時(shi)間(jian)的氮化(hua)(hua)(hua)處(chu)(chu)理(li)容易影響鈦(tai)(tai)金(jin)(jin)(jin)屬(shu)的疲(pi)勞性(xing)能,化(hua)(hua)(hua)學熱(re)處(chu)(chu)理(li)后鈦(tai)(tai)合(he)金(jin)(jin)(jin)的耐蝕性(xing)能有所降低。離子(zi)注(zhu)入表(biao)面(mian)(mian)強化(hua)(hua)(hua)處(chu)(chu)理(li)提高(gao)(gao)鈦(tai)(tai)金(jin)(jin)(jin)屬(shu)的耐磨(mo)性(xing)主(zhu)要通過注(zhu)入 N、O、C 和 B 等元素,注(zhu)入表(biao)面(mian)(mian)改(gai)(gai)(gai)性(xing)層的厚度不超(chao)過 1 μm,可以改(gai)(gai)(gai)善鈦(tai)(tai)金(jin)(jin)(jin)屬(shu)的耐磨(mo)性(xing)能和抗疲(pi)勞性(xing)能。但對于(yu)高(gao)(gao)速重載服役的鈦(tai)(tai)金(jin)(jin)(jin)屬(shu)部件改(gai)(gai)(gai)性(xing)層太薄,起不到長久防護作用(yong)。

采用(yong)碳氮化(hua)(hua)(hua)物(wu)基金屬陶瓷(ci)(ci)涂(tu)層和(he)可控納米結構(gou)(gou)氧化(hua)(hua)(hua)物(wu)陶瓷(ci)(ci)涂(tu)層等對海(hai)洋環境中(zhong)關(guan)鍵運動(dong)部(bu)件(jian)(jian)進(jin)行(xing)(xing)耐磨(mo)蝕(shi)(shi)保護是目前國內外發展的(de)(de)(de)(de)(de)(de)趨勢。如歐美國家開發的(de)(de)(de)(de)(de)(de)海(hai)水液壓泵和(he)液壓馬達(da)傳動(dong)關(guan)鍵部(bu)件(jian)(jian)表面沉(chen)積耐磨(mo)陶瓷(ci)(ci)涂(tu)層,獲得(de)(de)了(le)良好的(de)(de)(de)(de)(de)(de)抗(kang)磨(mo)蝕(shi)(shi)性能[14-16]。海(hai)洋環境防護涂(tu)層失效(xiao)的(de)(de)(de)(de)(de)(de)主要(yao)原因源于微缺陷導(dao)致貫(guan)穿孔(kong)的(de)(de)(de)(de)(de)(de)形(xing)成(cheng),使(shi)氯離子(zi)滲入并作(zuo)用(yong)于基底材料,因此(ci)控制(zhi)并減(jian)少貫(guan)穿孔(kong)的(de)(de)(de)(de)(de)(de)形(xing)成(cheng)是提(ti)高(gao)涂(tu)層海(hai)水環境中(zhong)性能的(de)(de)(de)(de)(de)(de)必備要(yao)求。通過多層膜和(he)非(fei)晶(jing)(jing)(jing)納米晶(jing)(jing)(jing)結構(gou)(gou)的(de)(de)(de)(de)(de)(de)設(she)計和(he)優化(hua)(hua)(hua)可有效(xiao)打(da)斷涂(tu)層的(de)(de)(de)(de)(de)(de)柱狀晶(jing)(jing)(jing)生長,避免腐(fu)蝕(shi)(shi)通道(dao)的(de)(de)(de)(de)(de)(de)形(xing)成(cheng),抑(yi)制(zhi)層與(yu)層之間裂(lie)紋的(de)(de)(de)(de)(de)(de)產生和(he)擴展,非(fei)晶(jing)(jing)(jing)和(he)納米晶(jing)(jing)(jing)都有明顯(xian)的(de)(de)(de)(de)(de)(de)鈍化(hua)(hua)(hua)趨勢,非(fei)晶(jing)(jing)(jing)的(de)(de)(de)(de)(de)(de)腐(fu)蝕(shi)(shi)電位高(gao)于納米晶(jing)(jing)(jing),納米晶(jing)(jing)(jing)的(de)(de)(de)(de)(de)(de)鈍化(hua)(hua)(hua)區比(bi)非(fei)晶(jing)(jing)(jing)長,表面鈍化(hua)(hua)(hua)膜更容易形(xing)成(cheng)[17-18]。在非(fei)晶(jing)(jing)(jing)基體上形(xing)成(cheng)納米晶(jing)(jing)(jing)能促進(jin)鈍化(hua)(hua)(hua)膜的(de)(de)(de)(de)(de)(de)形(xing)成(cheng),阻止腐(fu)蝕(shi)(shi)反應(ying)的(de)(de)(de)(de)(de)(de)進(jin)行(xing)(xing)。另一方面,非(fei)晶(jing)(jing)(jing)部(bu)分晶(jing)(jing)(jing)化(hua)(hua)(hua)后,原子(zi)發生結構(gou)(gou)弛(chi)豫,結合能增大,使(shi)得(de)(de)合金中(zhong)的(de)(de)(de)(de)(de)(de)原子(zi)與(yu)溶(rong)液中(zhong)的(de)(de)(de)(de)(de)(de)離子(zi)的(de)(de)(de)(de)(de)(de)反應(ying)速率(lv)減(jian)慢[19]。

近年來眾多研究采(cai)用物(wu)(wu)理(li)氣相沉(chen)積(ji)涂(tu)(tu)層進(jin)行鈦金屬的耐磨(mo)蝕防護處理(li),氣相沉(chen)積(ji)可鍍涂(tu)(tu)層的種類多,涂(tu)(tu)層性能(neng)突出。鄧凱等(deng)[20]采(cai)用物(wu)(wu)理(li)氣相沉(chen)積(ji) DLC涂(tu)(tu)層、微弧氧化和離子注入(ru)等(deng)技術對(dui) TC11 進(jin)行表面處理(li),發現(xian)在海(hai)水中 TC11 的摩擦(ca)因數和磨(mo)損量(liang)均明顯降低,其中 DCL 涂(tu)(tu)層抗微動磨(mo)蝕性能(neng)最好。

Vladimir 等[21]對比了物理氣相(xiang)沉積鎢摻雜的(de) W-DLC涂層、熱噴(pen)涂涂層和(he)離子注入處理 TC4 鈦合金的(de)耐磨蝕性(xing)能,發現 W-DLC 涂層的(de)抗磨蝕性(xing)能最(zui)好(hao)。

Wang 等[22-23]采用多弧離子鍍技術設計制備了 TiSiCN耐磨蝕涂層。涂層具有 TiN 和 TiC 納米晶-Si3N4/SiC非晶-Ti3SiC2 MAX 相的耦合結構,涂層硬度可達30~40 GPa。涂層磨損與腐蝕交互作用解析發現交互作用占涂層總損失量最低為 3.7%,說明該涂層具有優異的抗磨損腐蝕交互作用能力。何倩等[24]在 TC4鈦合金表面制備了不同調制周期的 CrSiN 納米多層薄膜,發現調制周期為 45 nm 時,涂層的硬度和彈性模量最大,抗微動磨損腐蝕性能最好。耐磨蝕涂層與滲氮技術結合可以滿足高速重載等苛刻環境鈦金屬的長效防護需求。早在 1983 年芬蘭科學家 Korhonen等[25]為了緩解“雞蛋殼效應”,提出了 PN-PVD 復合處理技術,該復合處理技術融合了等離子體滲氮技術和物理氣相沉積技術的各自優勢。經過復合處理后,基體由于滲氮層的存在,硬度提高,從硬質涂層到基體之間的硬度梯度以及受載時的應力梯度呈連續平緩下降的趨勢,使得材料表面性能得到改善的同時,硬質涂層的附著性能也大為提高。Dong 等[8]采用氮化處理和多弧離子鍍 TiSiCN 復合技術對 TC4 合金進行表面強化處理,發現 TiSiCN 涂層和復合處理均有優異的抗磨損腐蝕交互作用能力,復合處理 TC4 鈦合金摩擦時,開路電位降低幅度更小,腐蝕電流更低,與 TiSiCN 涂層相比抗磨蝕性能提高了 1 倍,如圖 5所示。Rahmatian 等[26]采用高溫擴散的方法在 Ti6Al4V合金表面制備了雙層滲硼涂層(TiB2+TiB)來提高鈦合金的抗磨蝕性能,發現雙滲硼層的形成使鈦合金磨蝕磨損率大幅降低。Zhao 等[27]制備了一種新型的抗磨蝕涂層,通過陽極氧化技術處理硬質 TiN 涂層,在涂層近表面 200 nm 深處形成了 TiO2 納米管嵌入 TiN涂(tu)層(ceng)(ceng)的(de)復合結構(gou),該復合涂(tu)層(ceng)(ceng)與(yu) TiN 涂(tu)層(ceng)(ceng)相比,摩擦因數(shu)大(da)幅(fu)度降(jiang)低,腐蝕電流(liu)降(jiang)低了 1 個數(shu)量級,耐腐蝕性能大(da)幅(fu)度提高(gao),磨蝕磨損(sun)率降(jiang)低了 1/2,同時該涂(tu)層(ceng)(ceng)還(huan)具有(you)優(you)異的(de)抗(kang)菌和(he)防生物(wu)污損(sun)性能。通過對硬質涂(tu)層(ceng)(ceng)的(de)表面微結構(gou)功能化(hua)修飾可(ke)以實現鈦合金(jin)表面耐磨、抗(kang)腐蝕和(he)防生物(wu)污損(sun)多功能一體化(hua)涂(tu)層(ceng)(ceng)的(de)設(she)計(ji)和(he)制備(bei)。

t5.jpg

2、 鈦合金生物污損問題及其防護技術

2.1 鈦(tai)合金生物污損行(xing)為

海(hai)(hai)洋環境中鈦金(jin)屬(shu)與鋼、鋁和(he)銅材(cai)料(liao)相(xiang)比,鈦金(jin)屬(shu)防污(wu)(wu)性能最差(cha)。主(zhu)要原(yuan)因是鈦金(jin)屬(shu)具有良好的(de)(de)(de)(de)(de)生(sheng)物(wu)(wu)(wu)相(xiang)容性,幾乎所有海(hai)(hai)生(sheng)物(wu)(wu)(wu)都可(ke)在(zai)其(qi)表(biao)(biao)面(mian)(mian)(mian)附(fu)著(zhu)(zhu),導致嚴重的(de)(de)(de)(de)(de)生(sheng)物(wu)(wu)(wu)污(wu)(wu)損(sun)發生(sheng)[28-29]。圖 6a 給(gei)(gei)出(chu)了(le)印度曼達帕姆港純鈦金(jin)屬(shu)實海(hai)(hai)掛片 1 a 后的(de)(de)(de)(de)(de)形貌,鈦表(biao)(biao)面(mian)(mian)(mian)附(fu)著(zhu)(zhu)了(le)大(da)量(liang)的(de)(de)(de)(de)(de)海(hai)(hai)生(sheng)物(wu)(wu)(wu),生(sheng)物(wu)(wu)(wu)污(wu)(wu)損(sun)極為嚴重[30]。圖 6b 是工業純鈦在(zai)我國某海(hai)(hai)域試驗(yan)站海(hai)(hai)水(shui)(shui)全浸(jin)0.5 a后掛片表(biao)(biao)面(mian)(mian)(mian)即(ji)出(chu)現(xian)嚴重的(de)(de)(de)(de)(de)生(sheng)物(wu)(wu)(wu)污(wu)(wu)損(sun)特征[31]。圖 6c 給(gei)(gei)出(chu)了(le)不同材(cai)料(liao)在(zai)海(hai)(hai)水(shui)(shui)中長(chang)時間浸(jin)泡 1 a 后,其(qi)表(biao)(biao)面(mian)(mian)(mian)海(hai)(hai)生(sheng)物(wu)(wu)(wu)附(fu)著(zhu)(zhu)程度對比,除了(le)錫(xi)金(jin)屬(shu)外(wai),鈦合金(jin)的(de)(de)(de)(de)(de)生(sheng)物(wu)(wu)(wu)污(wu)(wu)損(sun)程度遠高于(yu)銅、鋁和(he)不銹鋼等(deng)材(cai)料(liao)[29]。海(hai)(hai)洋生(sheng)物(wu)(wu)(wu)污(wu)(wu)損(sun)過程一(yi)般(ban)(ban)可(ke)以劃(hua)分為4 個階段[32],主(zhu)要包括:(1)條件(jian)膜(mo)的(de)(de)(de)(de)(de)形成(cheng),蛋白質或多(duo)糖等(deng)有機(ji)分子(zi)和(he)無機(ji)化合物(wu)(wu)(wu)最先吸附(fu)在(zai)材(cai)料(liao)表(biao)(biao)面(mian)(mian)(mian);(2)微生(sheng)物(wu)(wu)(wu)膜(mo)的(de)(de)(de)(de)(de)形成(cheng),細菌和(he)單細胞(bao)藻(zao)(zao)類等(deng)微生(sheng)物(wu)(wu)(wu)沉積在(zai)條件(jian)膜(mo)上(shang),在(zai)材(cai)料(liao)表(biao)(biao)面(mian)(mian)(mian)吸附(fu)和(he)繁殖;(3)海(hai)(hai)藻(zao)(zao)孢子(zi)和(he)原(yuan)生(sheng)動物(wu)(wu)(wu)的(de)(de)(de)(de)(de)附(fu)著(zhu)(zhu),一(yi)般(ban)(ban)發生(sheng)在(zai)材(cai)料(liao)浸(jin)入水(shui)(shui)中數(shu)周;(4)藤壺等(deng)大(da)型生(sheng)物(wu)(wu)(wu)在(zai)其(qi)表(biao)(biao)面(mian)(mian)(mian)附(fu)著(zhu)(zhu)和(he)生(sheng)長(chang),這些生(sheng)物(wu)(wu)(wu)生(sheng)長(chang)快速適(shi)應能力強,一(yi)般(ban)(ban)發生(sheng)在(zai)材(cai)料(liao)浸(jin)入水(shui)(shui)中數(shu)月(yue)。鈦合金(jin)雖然極易發生(sheng)生(sheng)物(wu)(wu)(wu)污(wu)(wu)損(sun),但(dan)其(qi)表(biao)(biao)面(mian)(mian)(mian)氧(yang)化膜(mo)致密(mi)穩定,氧(yang)化膜(mo)起到了(le)防腐蝕作用,但(dan)在(zai)污(wu)(wu)損(sun)

群落變(bian)化,特(te)別是(shi)局部(bu)環境(jing) pH 變(bian)化后,其防(fang)腐蝕作用難以保證其穩定性和(he)長期性。微生(sheng)物(wu)附著和(he)繁殖會分泌黏(nian)液,容易黏(nian)附水(shui)中(zhong)的有機物(wu)和(he)泥沙,導致鈦(tai)合(he)金(jin)(jin)部(bu)件摩擦因數增(zeng)(zeng)加,從而使(shi)系統的阻力增(zeng)(zeng)大和(he)傳熱效果降低,影響部(bu)件和(he)雖然(ran)不會影響鈦(tai)合(he)金(jin)(jin)在海水(shui)中(zhong)的鈍(dun)化,也不會促(cu)進鈦(tai)合(he)金(jin)(jin)的腐蝕,但(dan)是(shi)會使(shi)鈦(tai)合(he)金(jin)(jin)發生(sheng)縫隙腐蝕的趨勢增(zeng)(zeng)加,增(zeng)(zeng)加船(chuan)舶的 阻力,海生(sheng)物(wu)的脫落也會堵塞熱交換器的管路(lu),造成(cheng)嚴(yan)重的危害。

t6.jpg

2.2 鈦合(he)金防生物(wu)污損技術

鈦金屬防生(sheng)物污損的主要(yao)技術手段(duan)可(ke)以分為物理方法(fa)(fa)(fa)(fa)和(he)化(hua)學(xue)方法(fa)(fa)(fa)(fa)兩(liang)種(zhong)[33-36]。物理方法(fa)(fa)(fa)(fa)包括超聲波(bo)法(fa)(fa)(fa)(fa)、微泡法(fa)(fa)(fa)(fa)、高流速法(fa)(fa)(fa)(fa)、激光照射(she)法(fa)(fa)(fa)(fa)和(he)紫外照射(she)法(fa)(fa)(fa)(fa)等(deng)。

超聲波法通常是把頻率高于 20 kHz 的聲波作用于黏液層形成后向藻類附著演變階段,放置后續海生物附著于繁殖。微泡法是向海水中注入 CO2 微泡,融入CO2 的(de)碳(tan)酸(suan)水可對藤壺幼蟲(chong)的(de)附(fu)著(zhu)階段起到抑(yi)制(zhi)作用(yong)。高流(liu)速法是(shi)利(li)用(yong)高速水流(liu)阻止(zhi)海生(sheng)物(wu)的(de)附(fu)著(zhu)。激光照(zhao)(zhao)射法和(he)紫外(wai)(wai)照(zhao)(zhao)射法是(shi)基(ji)于光催化(hua)(hua)和(he)紫外(wai)(wai)線(xian)直接(jie)破壞(huai)微生(sheng)物(wu)基(ji)體(ti)結構,造成細胞(bao)死亡起到防止(zhi)海生(sheng)物(wu)附(fu)著(zhu)的(de)效果。物(wu)理方(fang)法多借助(zhu)外(wai)(wai)圍(wei)裝置實現防污效果,對鈦金屬(shu)部件(jian)的(de)實際使用(yong)工況有要求和(he)限制(zhi)。化(hua)(hua)學方(fang)法包括(kuo)直接(jie)注入殺菌劑方(fang)法、外(wai)(wai)加(jia)電(dian)位防污法、防污涂層法等(deng)。直接(jie)注入法是(shi)在海水中直接(jie)注入液氯、次氯酸(suan)鈉、二(er)氧化(hua)(hua)氯和(he)臭氧等(deng)實現殺菌防污效果。

電(dian)解防(fang)(fang)污(wu)法(fa)是(shi)在(zai)鈦金屬部(bu)件表面施加電(dian)壓使海(hai)(hai)水電(dian)解,產生(sheng) ClO-可有效抑制海(hai)(hai)生(sheng)物(wu)附著。防(fang)(fang)污(wu)涂層(ceng)法(fa)是(shi)在(zai)鈦金屬部(bu)件表面制備殺菌防(fang)(fang)污(wu)損涂層(ceng)實現(xian)防(fang)(fang)污(wu)效果,不需要(yao)引入(ru)外部(bu)裝(zhuang)置,涂層(ceng)直(zhi)接沉(chen)積于(yu)工件表面,不影響(xiang)工件的安裝(zhuang)和(he)正常工作,而且可以實現(xian)長(chang)效防(fang)(fang)腐性(xing)能,是(shi)很有前(qian)途(tu)的防(fang)(fang)污(wu)損技術。

目前防(fang)(fang)污劑釋放型(xing)涂(tu)層(ceng)統治市(shi)場,可控溶解型(xing)防(fang)(fang)污涂(tu)層(ceng)結(jie)合納(na)米(mi)緩釋技術可以更(geng)好地(di)實現低毒環保和高效(xiao)長效(xiao)防(fang)(fang)污而成為防(fang)(fang)污技術中(zhong)的研究(jiu)熱點之一。

最常用(yong)(yong)(yong)的(de)(de)(de)(de)防污(wu)劑是氧(yang)化亞銅(tong)(tong),銅(tong)(tong)元素可降低生(sheng)(sheng)物(wu)機體(ti)中主(zhu)酶的(de)(de)(de)(de)活化作用(yong)(yong)(yong),縮(suo)短(duan)生(sheng)(sheng)物(wu)的(de)(de)(de)(de)壽(shou)命,也可以(yi)(yi)直接(jie)將生(sheng)(sheng)物(wu)的(de)(de)(de)(de)細胞(bao)蛋白(bai)(bai)質沉(chen)淀(dian)為金屬(shu)蛋白(bai)(bai)質。但銅(tong)(tong)的(de)(de)(de)(de)釋(shi)(shi)放量(liang)仍難以(yi)(yi)定量(liang)定位精(jing)確控(kong)制,常導致過量(liang)釋(shi)(shi)放,對環境造(zao)成污(wu)染。王(wang)浩楠等[37]利(li)(li)用(yong)(yong)(yong)銅(tong)(tong)離(li)子(zi)(zi)(zi)殺菌(jun)(jun)效(xiao)果和鈦(tai)銅(tong)(tong)電偶腐蝕的(de)(de)(de)(de)原理(li),設計了(le)鈦(tai)基(ji)金屬(shu)表面用(yong)(yong)(yong)銅(tong)(tong)/鋁多層(ceng)復合(he)(he)(he)陽極,可在(zai)鈦(tai)表面持(chi)續析出(chu)銅(tong)(tong)離(li)子(zi)(zi)(zi),從而抑(yi)(yi)制海生(sheng)(sheng)物(wu)在(zai)鈦(tai)表面的(de)(de)(de)(de)附著。李兆峰等[38]采用(yong)(yong)(yong)微弧(hu)氧(yang)化技(ji)術(shu)(shu)(shu)在(zai)鈦(tai)表面制備出(chu)非晶(jing)和納(na)米(mi)晶(jing)復合(he)(he)(he)涂(tu)層(ceng),涂(tu)層(ceng)中含有(you)(you)(you)(you)TiO2 和 Cu2O 納(na)米(mi)晶(jing),該涂(tu)層(ceng)具有(you)(you)(you)(you)良好的(de)(de)(de)(de)防生(sheng)(sheng)物(wu)污(wu)損(sun)性(xing)能(neng)。Bai 等[39]利(li)(li)用(yong)(yong)(yong)多弧(hu)離(li)子(zi)(zi)(zi)鍍(du)技(ji)術(shu)(shu)(shu)在(zai) Ti6Al4V 表面制備了(le) TiSiN/Cu 多層(ceng)涂(tu)層(ceng),涂(tu)層(ceng)具有(you)(you)(you)(you)超(chao)高的(de)(de)(de)(de)硬度,硬度最高可達 40 GPa,具有(you)(you)(you)(you)優異(yi)的(de)(de)(de)(de)耐(nai)磨性(xing)能(neng)。同時利(li)(li)用(yong)(yong)(yong) TiN 納(na)米(mi)晶(jing)與(yu) Si3N4 非晶(jing)耦(ou)合(he)(he)(he)結構障礙層(ceng),通(tong)過迷(mi)宮狀晶(jing)界微通(tong)道實現對 Cu 離(li)子(zi)(zi)(zi)的(de)(de)(de)(de)微量(liang)可控(kong)釋(shi)(shi)放,獲得(de)(de)長效(xiao)抗菌(jun)(jun)和防污(wu)損(sun)性(xing)能(neng),如圖 7 所示。納(na)米(mi)銀(yin)材料具有(you)(you)(you)(you)良好的(de)(de)(de)(de)抑(yi)(yi)菌(jun)(jun)效(xiao)果,銀(yin)離(li)子(zi)(zi)(zi)和納(na)米(mi)銀(yin)產(chan)生(sheng)(sheng)的(de)(de)(de)(de)活性(xing)氧(yang)簇基(ji)團(tuan)(ROS)可破壞細胞(bao)膜和 DNA[40]。但關于(yu)納(na)米(mi)銀(yin)為什(shen)么能(neng)夠與(yu)細胞(bao)膜結合(he)(he)(he)并穿過細胞(bao)膜到達細胞(bao)內(nei)部尚(shang)未(wei)有(you)(you)(you)(you)定論。相(xiang)關研究報道顯示,物(wu)理(li)氣相(xiang)沉(chen)積 TiN、CrN、TaN 和 ZrN 與(yu) Ag 和 Cu 復合(he)(he)(he)涂(tu)層(ceng)可以(yi)(yi)獲得(de)(de)優異(yi)的(de)(de)(de)(de)殺菌(jun)(jun)效(xiao)果[41-47]。Zhu 等[48]利(li)(li)用(yong)(yong)(yong)多弧(hu)離(li)子(zi)(zi)(zi)鍍(du)技(ji)術(shu)(shu)(shu)在(zai)鈦(tai)合(he)(he)(he)金表面沉(chen)積制備了(le)超(chao)硬 TiSiN/Ag 涂(tu)層(ceng)。

涂層(ceng)具有(you)非(fei)晶納米晶鑲嵌和多層(ceng)多界面結構,Ag 層(ceng)呈(cheng)不(bu)連(lian)續分布,Ag 具有(you)超強的(de)擴(kuo)散(san)(san)能力,可擴(kuo)散(san)(san)至TiSiN 層(ceng)中(zhong),納米壓(ya)入測(ce)試(shi)涂層(ceng)硬度可達 40~50 GPa。

多層多界面結構有效抑制了裂紋的擴展,避免貫穿性裂紋在涂層中的形成,可防止海水滲入導致涂層早期失效,摻 Ag 涂層對三角藻的貼附具有顯著的抑制作用。Wang 等[49]受鐵電/壓電效應的啟發,提出一種抗生物污染涂層的新策略,采用微弧氧化技術將 BaTiO3顆粒包埋在 TiO2 涂層(ceng)(ceng)里,該涂層(ceng)(ceng)具(ju)有優異的(de)(de)(de)抗(kang)生物(wu)污(wu)(wu)損(sun)性能。當船在海洋中航(hang)行時,波浪沖擊引起的(de)(de)(de)壓電響(xiang)應還將提(ti)高涂層(ceng)(ceng)的(de)(de)(de)抗(kang)菌性能,有望(wang)通過刺激產生友好且(qie)持久的(de)(de)(de)抗(kang)生物(wu)污(wu)(wu)損(sun)性能。鈦合金的(de)(de)(de)生物(wu)污(wu)(wu)損(sun)很(hen)嚴(yan)重(zhong),給海洋環境中鈦合金的(de)(de)(de)應用帶來(lai)很(hen)大(da)的(de)(de)(de)影響(xiang),生物(wu)污(wu)(wu)損(sun)腐蝕(shi)與腐蝕(shi)磨損(sun)協(xie)同作(zuo)用將導致更(geng)嚴(yan)重(zhong)的(de)(de)(de)損(sun)傷(shang)失效(xiao),是(shi)未來(lai)研究(jiu)的(de)(de)(de)難點和(he)亟需解決(jue)的(de)(de)(de)瓶頸(jing)問題。環境自適應和(he)響(xiang)應的(de)(de)(de)防污(wu)(wu)涂層(ceng)(ceng)開發也(ye)是(shi)鈦合金防污(wu)(wu)技術的(de)(de)(de)發展趨勢。

t7.jpg

3、 鈦合金異金屬接觸電偶腐蝕問題及其防護技術

3.1 鈦合金異(yi)金屬(shu)接(jie)觸電(dian)偶腐蝕行為(wei)

電(dian)(dian)(dian)(dian)(dian)偶(ou)腐(fu)蝕(shi)(shi)是指異(yi)種金(jin)(jin)(jin)(jin)屬(shu)(shu)在電(dian)(dian)(dian)(dian)(dian)解(jie)液環境中由于腐(fu)蝕(shi)(shi)電(dian)(dian)(dian)(dian)(dian)位(wei)(wei)差(cha)異(yi)形成原(yuan)電(dian)(dian)(dian)(dian)(dian)池腐(fu)蝕(shi)(shi)的現象,又(you)稱接觸(chu)腐(fu)蝕(shi)(shi)或雙(shuang)金(jin)(jin)(jin)(jin)屬(shu)(shu)腐(fu)蝕(shi)(shi)。鈦(tai)金(jin)(jin)(jin)(jin)屬(shu)(shu)相比其他合金(jin)(jin)(jin)(jin)具有較(jiao)高的正電(dian)(dian)(dian)(dian)(dian)位(wei)(wei)(表(biao) 3)[3]。鈦(tai)在浸入海(hai)水的瞬間電(dian)(dian)(dian)(dian)(dian)位(wei)(wei)為-0.8 V,幾分鐘(zhong)后由于表(biao)面氧化膜的形成迅速(su)增加到(dao)-0.1 V,經過 100 d 的電(dian)(dian)(dian)(dian)(dian)位(wei)(wei)穩定后,測(ce)試其穩態腐(fu)蝕(shi)(shi)電(dian)(dian)(dian)(dian)(dian)位(wei)(wei)可高達(da)+0.38 V[1]。鈦(tai)金(jin)(jin)(jin)(jin)屬(shu)(shu)的穩態腐(fu)蝕(shi)(shi)電(dian)(dian)(dian)(dian)(dian)位(wei)(wei)遠高于大多數金(jin)(jin)(jin)(jin)屬(shu)(shu)材(cai)料,在自來水、海(hai)水和鹽溶液中與(yu)異(yi)種金(jin)(jin)(jin)(jin)屬(shu)(shu)偶(ou)接時作為陰極被保(bao)護(hu),從而加速(su)偶(ou)接合金(jin)(jin)(jin)(jin)的腐(fu)蝕(shi)(shi)[50],其腐(fu)蝕(shi)(shi)原(yuan)理如圖(tu) 8 所示(shi)。

t8.jpg

b3.jpg

b4.jpg

電偶腐蝕的程度主要根據電偶電流密度(Jg)的大小來劃分,按平均電偶電流密度的大小將電偶腐蝕程度分為 5 級,分別是:不腐蝕的 A 級(Jg≤0.3 μA/cm2);輕微腐蝕的 B 級(0.3 μA/cm2 < Jg ≤1.0 μA/cm2);明顯腐蝕的 C 級(1.0 μA/cm2< Jg ≤3.0 μA/cm2);嚴重腐蝕的 D 級(3.0 μA/cm2< Jg ≤10.0 μA /cm2)和 E 級(Jg >10.0 μA/cm2);鈦金屬與其他金屬材料發生電偶腐蝕的程度如表 4 所示[51]。鈦合金與結構鋼接觸形成電偶對時,電偶電流密度在 1.0~15 μA/cm2 之間,電偶腐蝕等級為 B—E 級。鈦合金與結構鋼接觸會發生嚴重的電偶腐蝕,需要對結構鋼進行防護后方可使用。鈦合金與鋁合金接觸形成電偶對時,電偶電流密度大多大于 3.0 μA/cm2,電(dian)(dian)偶(ou)腐(fu)蝕等級為 D—E級。因(yin)此,與(yu)(yu)鈦(tai)(tai)合(he)(he)金(jin)接(jie)觸(chu)的(de)(de)鋁(lv)(lv)合(he)(he)金(jin)會(hui)(hui)產生(sheng)嚴重的(de)(de)腐(fu)蝕,必(bi)須對鋁(lv)(lv)合(he)(he)金(jin)防(fang)護后方(fang)可使用(yong)。鈦(tai)(tai)合(he)(he)金(jin)與(yu)(yu)不(bu)(bu)(bu)銹鋼(gang)和(he)鎳基 合(he)(he) 金(jin) 接(jie) 觸(chu) 形 成 電(dian)(dian) 偶(ou) 對 時(shi) , 電(dian)(dian) 偶(ou) 電(dian)(dian) 流 密 度 小 于0.3 μA/cm2,電(dian)(dian)偶(ou)腐(fu)蝕等級為 A。一(yi)(yi)般海洋環(huan)境中(zhong),鈦(tai)(tai)金(jin)屬是允許不(bu)(bu)(bu)加(jia)防(fang)護與(yu)(yu)不(bu)(bu)(bu)銹鋼(gang)和(he)鎳基合(he)(he)金(jin)直接(jie)接(jie)觸(chu)使用(yong)。鈦(tai)(tai)金(jin)屬與(yu)(yu)銅(tong)(tong)合(he)(he)金(jin)接(jie)觸(chu),由于兩者的(de)(de)電(dian)(dian)位(wei)差不(bu)(bu)(bu)是很大(da),銅(tong)(tong)合(he)(he)金(jin)同(tong)時(shi)具(ju)有一(yi)(yi)定(ding)(ding)的(de)(de)自鈍化能(neng)力,并不(bu)(bu)(bu)一(yi)(yi)定(ding)(ding)會(hui)(hui)發(fa)生(sheng)嚴重的(de)(de)電(dian)(dian)偶(ou)腐(fu)蝕,黃銅(tong)(tong)和(he)紫(zi)銅(tong)(tong)合(he)(he)金(jin)受(shou)鈦(tai)(tai)的(de)(de)電(dian)(dian)偶(ou)腐(fu)蝕作(zuo)用(yong)較(jiao)小。銅(tong)(tong)鎳合(he)(he)金(jin)(B10 和(he) B30)與(yu)(yu)鈦(tai)(tai)偶(ou)合(he)(he)時(shi),電(dian)(dian)偶(ou)腐(fu)蝕作(zuo)用(yong)會(hui)(hui)隨著鈦(tai)(tai)-銅(tong)(tong)鎳合(he)(he)金(jin)面積比的(de)(de)增(zeng)大(da)而增(zeng)加(jia)。

3.2 鈦(tai)合金電(dian)偶腐(fu)蝕防護技(ji)術

金(jin)屬(shu)(shu)(shu)材料電(dian)(dian)(dian)(dian)(dian)偶(ou)腐(fu)蝕(shi)(shi)發(fa)生需要(yao)具備 3 個(ge)條件:(1)兩(liang)種金(jin)屬(shu)(shu)(shu)存在電(dian)(dian)(dian)(dian)(dian)位(wei)差(cha)(電(dian)(dian)(dian)(dian)(dian)位(wei)差(cha)小于 50 mV 時發(fa)生電(dian)(dian)(dian)(dian)(dian)偶(ou)腐(fu)蝕(shi)(shi)的(de)(de)可能性很小,電(dian)(dian)(dian)(dian)(dian)位(wei)差(cha)大于 0.25 V 就會發(fa)生明顯(xian)的(de)(de)電(dian)(dian)(dian)(dian)(dian)偶(ou)腐(fu)蝕(shi)(shi)[52];(2)存在電(dian)(dian)(dian)(dian)(dian)子通道,即(ji)兩(liang)種金(jin)屬(shu)(shu)(shu)直(zhi)接或間(jian)接實現接觸;(3)存在離子通道,兩(liang)種金(jin)屬(shu)(shu)(shu)同(tong)處于電(dian)(dian)(dian)(dian)(dian)解質介(jie)質中。針(zhen)對(dui)鈦金(jin)屬(shu)(shu)(shu)預防電(dian)(dian)(dian)(dian)(dian)偶(ou)腐(fu)蝕(shi)(shi)問(wen)題,防護(hu)(hu)技術的(de)(de)設計和(he)開(kai)發(fa)主(zhu)要(yao)是(shi)使上述其中一(yi)個(ge)條件不(bu)成立(li)就可以避免(mian)電(dian)(dian)(dian)(dian)(dian)偶(ou)腐(fu)蝕(shi)(shi)的(de)(de)發(fa)生。鈦金(jin)屬(shu)(shu)(shu)電(dian)(dian)(dian)(dian)(dian)偶(ou)腐(fu)蝕(shi)(shi)防護(hu)(hu)技術主(zhu)要(yao)包括如(ru)下幾方面。

1)合(he)(he)理(li)的(de)選材(cai)和(he)結構設計(ji)。選用與鈦(tai)(tai)合(he)(he)金(jin)(jin)電位(wei)差相近的(de)金(jin)(jin)屬(shu)(shu)材(cai)料(liao)接觸(chu),如(ru)不銹鋼、鎳基耐蝕合(he)(he)金(jin)(jin)和(he)銅合(he)(he)金(jin)(jin)等。控制鈦(tai)(tai)合(he)(he)金(jin)(jin)與其(qi)(qi)相接觸(chu)金(jin)(jin)屬(shu)(shu)材(cai)料(liao)的(de)面積比(bi),適當減(jian)少(shao)鈦(tai)(tai)合(he)(he)金(jin)(jin)的(de)面積或增(zeng)大與其(qi)(qi)接觸(chu)金(jin)(jin)屬(shu)(shu)材(cai)料(liao)的(de)面積,避免大陰極和(he)小陽(yang)極金(jin)(jin)屬(shu)(shu)接觸(chu)結構的(de)設計(ji)。

當鈦與其他(ta)金(jin)(jin)屬(shu)的接觸(chu)面(mian)積比(bi)大于 4:1 時(shi),對其他(ta)金(jin)(jin)屬(shu)材料(liao)將是危險的。而當鈦與其他(ta)金(jin)(jin)屬(shu)接觸(chu)面(mian)積比(bi)小于 1 時(shi),電偶(ou)腐(fu)蝕作用可明(ming)顯減輕(qing)。

2)電絕緣防(fang)護技術。對于不可(ke)避免(mian)采用電位差大的(de)異金屬(shu)接(jie)觸(chu),在陰(yin)陽極(ji)材料接(jie)觸(chu)部位添加(jia)絕緣墊片進(jin)行電絕緣處(chu)理來(lai)(lai)消(xiao)(xiao)除電子導電通(tong)道,或者(zhe)使用緩蝕(shi)劑增大腐蝕(shi)介(jie)質電阻來(lai)(lai)消(xiao)(xiao)除離(li)子導電通(tong)道。在連接(jie)件之間鋪墊防(fang)接(jie)觸(chu)腐蝕(shi)膠布也有顯(xian)著的(de)防(fang)電偶腐蝕(shi)作用。

3)表(biao)(biao)面(mian)處理(li)(li)(li)(li)技術。表(biao)(biao)面(mian)處理(li)(li)(li)(li)技術是解決鈦(tai)(tai)電(dian)(dian)(dian)偶(ou)(ou)腐(fu)(fu)(fu)(fu)(fu)(fu)蝕的(de)(de)主要技術手段之一,如對(dui)鈦(tai)(tai)金(jin)(jin)(jin)屬進行(xing)(xing)(xing)陽極氧(yang)(yang)(yang)化(hua)(hua)(hua)處理(li)(li)(li)(li)和(he)涂覆低電(dian)(dian)(dian)位(wei)涂層(ceng)處理(li)(li)(li)(li)可(ke)以顯著(zhu)降(jiang)低電(dian)(dian)(dian)偶(ou)(ou)腐(fu)(fu)(fu)(fu)(fu)(fu)蝕速度(du)。西北(bei)有(you)(you)色金(jin)(jin)(jin)屬研究院采(cai)用電(dian)(dian)(dian)化(hua)(hua)(hua)學氧(yang)(yang)(yang)化(hua)(hua)(hua)處理(li)(li)(li)(li),在(zai)(zai)Ti80 合(he)金(jin)(jin)(jin)表(biao)(biao)面(mian)制(zhi)備(bei)了(le)(le)淺黑色氧(yang)(yang)(yang)化(hua)(hua)(hua)鈦(tai)(tai)膜,改膜層(ceng)絕緣(yuan)電(dian)(dian)(dian)阻達到 200 M?,降(jiang)低了(le)(le)鈦(tai)(tai)合(he)金(jin)(jin)(jin)與(yu)其他金(jin)(jin)(jin)屬配對(dui)時的(de)(de)電(dian)(dian)(dian)偶(ou)(ou)腐(fu)(fu)(fu)(fu)(fu)(fu)蝕電(dian)(dian)(dian)流[1]。張曉(xiao)云等(deng)(deng)(deng)(deng)[53]對(dui) TC21 鈦(tai)(tai)合(he)金(jin)(jin)(jin)表(biao)(biao)面(mian)進行(xing)(xing)(xing)陽極氧(yang)(yang)(yang)化(hua)(hua)(hua)處理(li)(li)(li)(li),降(jiang)低了(le)(le)與(yu)高強(qiang)鋼偶(ou)(ou)接(jie)的(de)(de)電(dian)(dian)(dian)偶(ou)(ou)腐(fu)(fu)(fu)(fu)(fu)(fu)蝕傾(qing)向。周科等(deng)(deng)(deng)(deng)[54]采(cai)用微(wei)弧氧(yang)(yang)(yang)化(hua)(hua)(hua)技術在(zai)(zai)鈦(tai)(tai)合(he)金(jin)(jin)(jin)表(biao)(biao)面(mian)制(zhi)備(bei)了(le)(le)氧(yang)(yang)(yang)化(hua)(hua)(hua)鈦(tai)(tai)陶(tao)瓷涂層(ceng),涂覆的(de)(de)涂層(ceng)具(ju)有(you)(you)優良(liang)的(de)(de)阻隔性能(neng),能(neng)有(you)(you)效緩解與(yu) 30CrMnSiA 鋼的(de)(de)電(dian)(dian)(dian)偶(ou)(ou)腐(fu)(fu)(fu)(fu)(fu)(fu)蝕。對(dui)于(yu)鈦(tai)(tai)合(he)金(jin)(jin)(jin)接(jie)觸材料的(de)(de)表(biao)(biao)面(mian)處理(li)(li)(li)(li)也(ye)可(ke)以降(jiang)低電(dian)(dian)(dian)偶(ou)(ou)腐(fu)(fu)(fu)(fu)(fu)(fu)蝕傾(qing)向。尹作升等(deng)(deng)(deng)(deng)[55]采(cai)用陽極氧(yang)(yang)(yang)化(hua)(hua)(hua)處理(li)(li)(li)(li)在(zai)(zai) 2024 和(he) 2124 鋁(lv)合(he)金(jin)(jin)(jin)表(biao)(biao)面(mian)制(zhi)備(bei)了(le)(le)一層(ceng)致密氧(yang)(yang)(yang)化(hua)(hua)(hua)膜,降(jiang)低了(le)(le)鋁(lv)合(he)金(jin)(jin)(jin)與(yu) TC4 鈦(tai)(tai)合(he)金(jin)(jin)(jin)的(de)(de)電(dian)(dian)(dian)偶(ou)(ou)腐(fu)(fu)(fu)(fu)(fu)(fu)蝕程度(du)。劉建華(hua)等(deng)(deng)(deng)(deng)[56]對(dui)鋁(lv)合(he)金(jin)(jin)(jin)和(he)高強(qiang)鋼進行(xing)(xing)(xing)表(biao)(biao)面(mian)鍍(du)銅(tong)處理(li)(li)(li)(li),使其與(yu)鈦(tai)(tai)合(he)金(jin)(jin)(jin)偶(ou)(ou)接(jie)時的(de)(de)腐(fu)(fu)(fu)(fu)(fu)(fu)蝕電(dian)(dian)(dian)流維持在(zai)(zai)較低的(de)(de)水(shui)平(ping)。趙平(ping)平(ping)等(deng)(deng)(deng)(deng)[57]研究 z 針(zhen)對(dui)鈦(tai)(tai)-鋁(lv)連接(jie)時的(de)(de)電(dian)(dian)(dian)偶(ou)(ou)腐(fu)(fu)(fu)(fu)(fu)(fu)蝕問題,發現對(dui)陽極 2024 進行(xing)(xing)(xing)防(fang)護比對(dui)陰(yin)極 ZTi60 進行(xing)(xing)(xing)防(fang)護,具(ju)有(you)(you)更好(hao)的(de)(de)抑制(zhi)電(dian)(dian)(dian)偶(ou)(ou)腐(fu)(fu)(fu)(fu)(fu)(fu)蝕的(de)(de)效果。

4)電(dian)(dian)磁(ci)(ci)場調控防(fang)腐(fu)蝕新技術(shu),即利(li)用電(dian)(dian)磁(ci)(ci)學等(deng)物理(li)技術(shu)減(jian)緩(huan)金(jin)屬(shu)連(lian)接(jie)件電(dian)(dian)偶(ou)(ou)(ou)腐(fu)蝕行(xing)為。通過(guo)(guo)外加(jia)(jia)磁(ci)(ci)場對(dui)(dui)引起電(dian)(dian)偶(ou)(ou)(ou)腐(fu)蝕中離子從陽(yang)極(ji)到陰(yin)極(ji)的(de)(de)遷移過(guo)(guo)程(cheng)產 生 影 響(xiang) , 從 而(er) 控 制(zhi) 電(dian)(dian) 偶(ou)(ou)(ou) 對(dui)(dui) 材(cai) 料(liao) 的(de)(de) 電(dian)(dian) 偶(ou)(ou)(ou) 腐(fu) 蝕 。Kountouras 等(deng)[58]研究(jiu)外加(jia)(jia)磁(ci)(ci)場對(dui)(dui) Zn-316L 不(bu)銹鋼電(dian)(dian)偶(ou)(ou)(ou)對(dui)(dui)材(cai)料(liao)的(de)(de)腐(fu)蝕行(xing)為,發現(xian)控制(zhi)磁(ci)(ci)場方向(xiang)與(yu)電(dian)(dian)偶(ou)(ou)(ou)對(dui)(dui)接(jie)觸面(mian)平(ping)行(xing)時(shi)可減(jian)緩(huan)電(dian)(dian)偶(ou)(ou)(ou)腐(fu)蝕程(cheng)度,而(er)磁(ci)(ci)場方向(xiang)與(yu)接(jie)觸面(mian)垂(chui)直時(shi)可以加(jia)(jia)速電(dian)(dian)偶(ou)(ou)(ou)腐(fu)蝕。開發電(dian)(dian)磁(ci)(ci)場防(fang)電(dian)(dian)偶(ou)(ou)(ou)腐(fu)蝕新技術(shu)有比較好的(de)(de)應(ying)用前景,有望實現(xian)鈦合(he)金(jin)與(yu)異(yi)種金(jin)屬(shu)偶(ou)(ou)(ou)接(jie)裝(zhuang)備結(jie)構的(de)(de)長效安(an)全可靠服(fu)役。

4、 發展趨勢及展望

鈦(tai)金屬(shu)由于具有優異的(de)耐海(hai)水和海(hai)洋(yang)大氣(qi)腐蝕性能,在海(hai)洋(yang)環境中的(de)應用必(bi)將越來越廣泛(fan)。為解(jie)決(jue)鈦(tai)金屬(shu)在海(hai)洋(yang)環境中表現出的(de)耐磨蝕性能差、易生物污損和電偶(ou)腐蝕的(de)問題,合適的(de)表面處理和涂層防護(hu)是必(bi)不可少的(de)。

1)現有傳統表(biao)(biao)面處理(li)(li)技(ji)術(shu)(shu)(shu)多可用于(yu)鈦金屬(shu)的表(biao)(biao)面處理(li)(li),但傳統表(biao)(biao)面處理(li)(li)技(ji)術(shu)(shu)(shu)存在許多不適(shi)(shi)應鈦金屬(shu)處理(li)(li)的技(ji)術(shu)(shu)(shu)難(nan)點(dian),開發適(shi)(shi)合鈦金屬(shu)表(biao)(biao)面處理(li)(li)的技(ji)術(shu)(shu)(shu)和裝備(bei)是一個主要研究方向。如鈦金屬(shu)氮化(hua)處理(li)(li)溫度要遠高于(yu)鋼鐵材料的氮化(hua)處理(li)(li),溫度一般要超過 800 ℃。

傳統(tong)的氮化(hua)裝(zhuang)備達不到這(zhe)么(me)高的溫(wen)度,就(jiu)需(xu)要(yao)對裝(zhuang)備的設計和(he)制造進(jin)行改進(jin)才能滿(man)足(zu)需(xu)求,同時高溫(wen)氮化(hua)導致大尺(chi)寸和(he)薄壁等復(fu)雜鈦(tai)金屬部件的變(bian)形問(wen)題(ti)也(ye)需(xu)要(yao)重點(dian)關(guan)注和(he)解決(jue)。

2)碳氮化(hua)物基金屬陶(tao)瓷涂(tu)層(ceng)和(he)可控納(na)米結構(gou)氧化(hua)物新(xin)型涂(tu)層(ceng)材料,是對鈦(tai)金屬關鍵(jian)運動部件(jian)海洋環境耐磨(mo)蝕(shi)保護的(de)發展趨勢,重點(dian)發展多(duo)組分、多(duo)尺(chi)度結構(gou)協同、表界面(mian)結構(gou)優(you)化(hua)、實現(xian)多(duo)功能一體(ti)化(hua)、環境自適應涂(tu)層(ceng)材料的(de)設計(ji)(ji)。針對鈦(tai)金屬易生物污損(sun)問題,設計(ji)(ji)開發防污劑釋放(fang)型和(he)可控溶解型防污涂(tu)層(ceng)結合納(na)米緩釋技術是研(yan)(yan)究(jiu)重點(dian),可以(yi)更好地實現(xian)低毒環保和(he)高效(xiao)長效(xiao)防污損(sun)性(xing)能。開發電(dian)(dian)磁(ci)場防電(dian)(dian)偶(ou)腐蝕(shi)新(xin)技術有比(bi)較好的(de)應用前景,研(yan)(yan)究(jiu)磁(ci)場強度和(he)磁(ci)場取(qu)向對電(dian)(dian)偶(ou)防護的(de)影響,設計(ji)(ji)新(xin)型磁(ci)場防護裝置,有望實現(xian)鈦(tai)合金與異種金屬偶(ou)接裝備結構(gou)的(de)長效(xiao)安全可靠服役。

3)隨著海(hai)洋資源的(de)(de)(de)開發和利用(yong)(yong)(yong),針(zhen)(zhen)對深海(hai)、極地和熱(re)帶海(hai)洋等極端(duan)環境服役的(de)(de)(de)海(hai)工裝(zhuang)備面臨(lin)更為復(fu)(fu)雜苛刻(ke)的(de)(de)(de)工況,需要開展極端(duan)環境、復(fu)(fu)雜工況和多因素強(qiang)耦合(he)作用(yong)(yong)(yong)下鈦(tai)金(jin)屬材料的(de)(de)(de)損(sun)(sun)(sun)傷(shang)(shang)評(ping)價裝(zhuang)置搭建、評(ping)價方法(fa)建立和損(sun)(sun)(sun)傷(shang)(shang)機理(li)揭(jie)示研(yan)(yan)究。生(sheng)物(wu)污損(sun)(sun)(sun)腐(fu)蝕(shi)(shi)與腐(fu)蝕(shi)(shi)磨(mo)損(sun)(sun)(sun)多因素協同(tong)作用(yong)(yong)(yong)將導(dao)致鈦(tai)金(jin)屬更為嚴重的(de)(de)(de)損(sun)(sun)(sun)傷(shang)(shang)失效,鈦(tai)合(he)金(jin)生(sheng)物(wu)污損(sun)(sun)(sun)與腐(fu)蝕(shi)(shi)磨(mo)損(sun)(sun)(sun)協同(tong)損(sun)(sun)(sun)傷(shang)(shang)和防護技(ji)(ji)術(shu)研(yan)(yan)究是(shi)(shi)鈦(tai)合(he)金(jin)海(hai)洋環境應用(yong)(yong)(yong)必須考慮(lv)的(de)(de)(de)問題,也是(shi)(shi)未(wei)來(lai)研(yan)(yan)究的(de)(de)(de)難(nan)點和熱(re)點方向。鈦(tai)金(jin)屬表(biao)(biao)面處(chu)理(li)技(ji)(ji)術(shu)種類很多,每種處(chu)理(li)技(ji)(ji)術(shu)都有自(zi)己的(de)(de)(de)優缺點,針(zhen)(zhen)對極端(duan)環境用(yong)(yong)(yong)鈦(tai)金(jin)屬部件開發多種表(biao)(biao)面處(chu)理(li)技(ji)(ji)術(shu)復(fu)(fu)合(he)和協同(tong)防護是(shi)(shi)必然趨勢,如氮化/離子注入/激光沖(chong)擊強(qiang)化與氣(qi)相沉積涂(tu)層復(fu)(fu)合(he)技(ji)(ji)術(shu)、表(biao)(biao)面織構化與涂(tu)層復(fu)(fu)合(he)技(ji)(ji)術(shu)、微弧(hu)氧化與涂(tu)層復(fu)(fu)合(he)處(chu)理(li)技(ji)(ji)術(shu)等。

參考文獻:

[1]常輝. 海洋工程鈦金屬材料[M]. 北京: 化學(xue)工業出版社, 2017.

CHANG Hui. Titanium Alloys of Marine Applications[M].Beijing: Chemical Industry Press, 2017.

[2]孫靜, 齊元甲(jia), 劉輝, 等. 海洋環境(jing)下(xia)鈦及鈦合金的腐蝕磨損研究(jiu)進展(zhan)[J]. 材料保護, 2020, 53(1): 151-156.

SUN Jing, QI Yuan-jia, LIU Hui, et al. Research Progress on Tribo-Corrosion of Titanium and Titanium Alloys in Seawater Environment[J]. Materials Protection, 2020, 53(1): 151-156.

[3]杜翠, 杜楠(nan). 鈦合金選用與(yu)設(she)計[M]. 北京(jing): 化學(xue)工(gong)業出版社, 2014.

DU Cui, DU Nan. Selection and Design of Titanium Alloy[M]. Beijing: Chemical Industry Press, 2014.

[4]應揚, 李磊, 趙彬(bin), 等(deng). 鈦(tai)合金(jin)的(de)摩擦磨損(sun)性(xing)能及其(qi)改善方法[J]. 有色金(jin)屬(shu)材料與(yu)工(gong)程, 2019, 40(3): 49-54.

YING Yang, LI Lei, ZHAO Bin, et al. Friction and Wear Properties of Titanium Alloys and the Improving Methods[J].Nonferrous Meaterials and Engineering, 2019, 40(3):49-54.

[5]CAO Shou-fan, MISCHLER S. Modeling Tribocorrosion of Passive Metals – A Review[J]. Current Opinion in Solid State and Materials Science, 2018, 22(4): 127-141.

[6]CHEN Jun, ZHANG Qing, LI Quan-an, et al. Corrosion and Tribocorrosion Behaviors of AISI 316 Stainless Steel and Ti6Al4V Alloys in Artificial Seawater[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(4):1022-1031.

[7]鄭超, 魏(wei)世丞, 梁義, 等. TC4 鈦合金在 3.5%NaCl 溶液中的微動腐(fu)蝕特性[J]. 稀有金屬, 2018, 42(10): 1018-1023.

ZHENG Chao, WEI Shi-cheng, LIANG Yi, et al. Fretting Corrosion Characteristics of TC4 Titanium Alloy in 3.5%NaCl Solution[J]. Chinese Journal of Rare Metals, 2018, 42(10): 1018-1023.

[8]DONG Min-peng, ZHU Ye-biao, WANG Chun-ting, et al.Structure and Tribocorrosion Properties of Duplex Treat-ment Coatings of TiSiCN/Nitride on Ti6Al4V Alloy[J].Ceramics International, 2019, 45(9): 12461-12468.

[9]DALMAU BORRáS A, RODA BUCH A, ROVIRA CARDETE A, et al. Chemo-Mechanical Effects on the Tribocorrosion Behavior of Titanium/Ceramic Dental Implant Pairs in Artificial Saliva[J]. Wear, 2019, 426-427:162-170.

[10]王林青, 周永(yong)濤, 王軍軍, 等. TC4 鈦合金在模擬(ni)海水中腐(fu)蝕(shi)-磨(mo)損交(jiao)互行為研(yan)究[J]. 摩擦學(xue)學(xue)報, 2019,39(2): 206-212.

WANG Lin-qing, ZHOU Yong-tao, WANG Jun-jun, et al.Corrosion-Wear Interaction Behavior of TC4 Titanium Alloy in Simulated Seawater[J]. Tribology, 2019, 39(2): 206-212.

[11]丁紅(hong)燕(yan), 戴振東. 鈦合金在海水中(zhong)的微動(dong)磨損特性(xing)[J].稀有金屬材料(liao)與工程, 2007, 36(5): 778-781.

DING Hong-yan, DAI Zhen-dong. Fretting Wear Characteristics of Titanium Alloy in Seawater[J]. Rare Metal Materials and Engineering, 2007, 36(5): 778-781.

[12]CHEN Jun, ZHANG Qing. Effect of Electrochemical State on Corrosion–Wear Behaviors of TC4 Alloy in Artificial Seawater[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(4): 1011-1018.

[13]ZHANG Yue, YIN Xiang-yu, WANG Jian-zhang, et al.Influence of Microstructure Evolution on Tribocorrosion of 304SS in Artificial Seawater[J]. Corrosion Science, 2014, 88: 423-433.

[14]ZHOU Fei, WANG Yuan, LIU Feng, et al. Friction and Wear Properties of Duplex MAO/CrN Coatings Sliding Against Si3N4 Ceramic Balls in Air, Water and Oil[J]. Wear, 2009, 267(9-10): 1581-1588.

[15]鄧飛飛, 程旭東(dong), 張子(zi)軍, 等. 水潤滑低摩擦因數陶瓷涂層摩擦副的研究[J]. 武漢理(li)工大學學報, 2008, 30(9):24-27.

DENG Fei-fei, CHENG Xu-dong, ZHANG Zi-jun, et al.Research of Low Friction Coefficient Ceramic Coating Pairs under Water-Lubrication[J]. Journal of Wuhan University of Technology, 2008, 30(9): 24-27.

[16]焦素娟, 周華(hua), 楊華(hua)勇, 等. 水潤滑條件下等離子陶瓷(ci)涂層的磨(mo)損機理研究[J]. 中國(guo)機械工程, 2003, 14(6)514-516.

JIAO Su-juan, ZHOU Hua, YANG Hua-yong, et al. Inves-tigation on Wear Mechanism of Plasma-Sprayed Ceramic under Water-Lubricated Condition[J]. China Mechanical Engineering, 2003, 14(6): 514-516.

[17]ANANTHAKUMAR R, SUBRAMANIAN B, KOBAYA-SHI A, et al. Electrochemical Corrosion and Materials Properties of Reactively Sputtered TiN/TiAlN Multilayer Coatings[J]. Ceramics International, 2012, 38(1): 477-485.

[18]GENG Xin, YANG Fan, CHEN Yi-qiang, et al. Silver Assisted Crack Healing in SiC[J]. Acta Materialia, 2016,105: 121-129.

[19]盧柯. 非晶態合(he)金向納(na)米晶體的相轉變[J]. 金屬學報,1994, 30(1): B001-B021.

LU Ke. Phase Transformation from an Amorphous Alloy into Nanocrystalline Materials[J]. Acta Metallrugica Sinica,1994, 30(1): B001-B021.

[20]鄧凱, 于敏, 戴振(zhen)東, 等. TC11 及表(biao)面(mian)改性膜層在海水中的微動磨損研究(jiu)[J]. 稀有金(jin)屬(shu)材料與工程(cheng), 2014,43(5): 1099-1104.

DENG Kai, YU Min, DAI Zhen-dong, et al. Fretting Wear of TC11 and Surface Modified Layers in Seawater[J].Rare Metal Materials and Engineering, 2014, 43(5): 1099-1104.

[21]TOTOLIN V, PEJAKOVI? V, CSANYI T, et al. Surface Engineering of Ti6Al4V Surfaces for Enhanced Tribo-corrosion Performance in Artificial Seawater[J]. Materials & Design, 2016, 104: 10-18.

[22]WANG Yue, LI Jin-long, DANG Chao-qun, et al. Influence of Carbon Contents on the Structure and Tribocorrosion Properties of TiSiCN Coatings on Ti6Al4V[J]. Tribology International, 2017, 109: 285-296.

[23]WANG Yue, LI Jin-long, DANG Chao-qun, et al.Influence of Bias Voltage on Structure and Tribocorrosion Properties of TiSiCN Coating in Artificial Seawater[J]. Materials Characterization, 2017, 127: 198-208.

[24]何倩, 孫德恩, 曾(ceng)憲(xian)光. TC4 鈦(tai)合(he)金(jin)表面沉積 CrSiN/SiN納米(mi)多(duo)層膜在 3.5%NaCl 溶液中(zhong)的腐蝕磨損(sun)性能[J]. 中(zhong)國表面工程, 2018, 31(1): 74-80.

HE Qian, SUN De-en, ZENG Xian-guang. Wear Corrosion Resistance of CrSiN/SiN Nano-Multilayer Coatings Depo-sited on TC4 Titanium Alloy in 3.5%NaCl Solution[J].China Surface Engineering, 2018, 31(1): 74-80.

[25]KORHONEN A S, SIRVIO E H, SULONEN M S. Plasma Nitriding and Ion Plating with an Intensified Glow Discharge[J]. Thin Solid Films, 1983, 107(4): 387-394.

[26]RAHMATIAN B, GHASEMI H M, HEYDARZADEH SOHI M, et al. Tribocorrosion and Corrosion Behavior of Double Borided Layers Formed on Ti-6Al-4V Alloy: An Approach for Applications to Bio-Implants[J]. Corrosion Science, 2023, 210: 110824.

[27]ZHAO Chun-lei, GAO Wen-jing, WANG Jun, et al. A Novel Biomedical TiN-Embedded TiO2 Nanotubes Com-posite Coating with Remarkable Mechanical Properties,Corrosion, Tribocorrosion Resistance, and Antibacterial Activity[J]. Ceramics International, 2023, 49(10): 15629-15640.

[28]張(zhang)文毓. 鈦(tai)及鈦(tai)合(he)金(jin)防污技術國內外研究現狀[J]. 全面腐蝕控制, 2016, 30(7)20-24, 42

ZHANG Wen-yu. Domestic and Foreign Research Present Situation of Titanium and Its Alloy Antifouling Techno-logy[J]. Total Corrosion Control, 2016, 30(7)20-24, 42

[29]李爭(zheng)顯, 王浩楠, 趙文. 鈦(tai)合金表面海生(sheng)物(wu)污損及防護技術的研究現狀和發展趨勢[J]. 鈦(tai)工業(ye)進展, 2015,32(6)1-7

LI Zheng-xian, WANG Hao-nan, ZHAO Wen. Current Research Situation and Development Trend of the Biofouling and Antifouling Technology on Titanium Alloy[J]. Titanium Industry Progress, 2015, 32(6)1-7

[30]PALRAJ S, VENKATACHARI G. Effect of Biofouling on Corrosion Behaviour of Grade 2 Titanium in Mandapam Seawaters[J]. Desalination, 2008, 230(1-3): 92-99.

[31]馬士德, 郭為(wei)民, 劉欣, 等. 工業純(chun)鈦(TA2)在南海三亞海洋環境試(shi)驗(yan)站海水(shui)全浸的生物污損與腐蝕[J]. 海洋科學, 2018, 42(10): 23-30.

MA Shi-de, GUO Wei-min, LIU Xin, et al. Biofouling and Corrosion Analyses of Industrial Pure Titanium (TA2)Immersed in Seawater at Sanya Marine Environmental Test Station in South China Sea[J]. Marine Sciences,2018, 42(10): 23-30.

[32]李莎. 碳/金屬(銀、銅)復(fu)合材(cai)料的(de)制備及(ji)防污性能[D].天津: 天津大學, 2014.

LI Sha. Preparation and Antifouling Properties of Carbon/Metal (Silver, Copper) Composites[D]. Tianjin:Tianjin University, 2014.

[33]張洪(hong)榮, 原培勝. 船舶防(fang)污技術(shu)[J]. 艦船科學(xue)技術(shu),2006, 28(1): 10-14.

ZHANG Hong-rong, YUAN Pei-sheng. Pollution Preven-tion Technology for Ships[J]. Ship Science and Techno-logy, 2006, 28(1): 10-14.

[34]FUKUSHIMA N. Development of Anti-fouling Methods for Gate Facilities[J]. Journal of IHI Technologies, 2013,53(3): 82-87.

[35]SHIODA K. Prevention of Biofouling on the Bottom of Ships by Air Micro-Bubbles[J]. Marine Engineering,2012, 47(5): 675-678.

[36]KAWABE A. Development of Antifouling Technologies for Heat Exchanger[J]. Sessile Organisms, 2004, 21:55-84.

[37]王(wang)浩楠, 陳云(yun)飛, 王(wang)毅飛, 等. 鈦制管路防污方(fang)法研究進展(zhan)[J]. 鈦工業進展(zhan), 2017, 34(6): 14-19.

WANG Hao-nan, CHEN Yun-fei, WANG Yi-fei, et al.Research Progress of Antifouling Methods for Titanium Pipes[J]. Titanium Industry Progress, 2017, 34(6): 14-19.

[38]李兆峰, 蔣(jiang)鵬, 張建(jian)欣(xin), 等. 鈦(tai)合金表(biao)面微(wei)弧(hu)氧化納米防污涂(tu)層(ceng)及性能研(yan)究[J]. 材料開發(fa)與應用, 2012, 27(6):48-53.

LI Zhao-feng, JIANG Peng, ZHANG Jian-xin, et al.Preparation and Performance of Nano Anti-Fouling Coatings by Microarc Oxidation[J]. Development and Application of Materials, 2012, 27(6): 48-53.

[39]BAI Xue-bing, LI Jin-long, ZHU Li-hui. Structure and Properties of TiSiN/Cu Multilayer Coatings Deposited on Ti6Al4V Prepared by Arc Ion Plating[J]. Surface and Coatings Technology, 2019, 372: 16-25.

[40]郭章偉. 納米銀防污劑制備(bei)及其對(dui)海(hai)洋(yang)微生物附著的抑制[D]. 上海(hai): 上海(hai)海(hai)洋(yang)大(da)學, 2015.

GUO Zhang-wei. Preparation of Nano-Silver Antifouling Agent and Its Inhibition on Marine Microbial Adhe-sion[D]. Shanghai: Shanghai Ocean University, 2015.

[41]PATHAK S, LI N, MAEDER X, et al. On the Origins of Hardness of Cu–TiN Nanolayered Composites[J]. Scripta Materialia, 2015, 109: 48-51.

[42]BAGHRICHE O, RTIMI S, ZERTAL A, et al. Accelerated Bacterial Reduction on Ag–TaN Compared with Ag–ZrN and Ag–TiN Surfaces[J]. Applied Catalysis B: Environ-mental, 2015, 174-175: 376-382.

[43]RAGHAVAN R, WHEELER J M, ESQUé-DE LOS OJOS D, et al. Mechanical Behavior of Cu/TiN Multi-layers at Ambient and Elevated Temperatures: Stress- Assisted Diffusion of Cu[J]. Materials Science and Engineering: A, 2015, 620: 375-382.

[44]DU Dong-xing, LIU Dao-xin, ZHANG Xiao-hua, et al.Characterization and Mechanical Properties Investigation of TiN-Ag Films Onto Ti-6Al-4V[J]. Applied Surface Science, 2016, 365: 47-56.

[45]RTIMI S, BAGHRICHE O, SANJINES R, et al.Photocatalysis/Catalysis by Innovative TiN and TiN-Ag Surfaces Inactivate Bacteria under Visible Light[J]. Applied Catalysis B: Environmental, 2012, 123-124:306-315.

[46]PEDROSA P, LOPES C, MARTIN N, et al. Electrical Characterization of Ag: TiN Thin Films Produced by Glancing Angle Deposition[J]. Materials Letters, 2014, 115: 136-139.

[47]KELLY P J, LI H, BENSON P S, et al. Comparison of the Tribological and Antimicrobial Properties of CrN/Ag,ZrN/Ag, TiN/Ag, and TiN/Cu Nanocomposite Coatings[J].Surface and Coatings Technology, 2010, 205(5): 1606-1610.

[48]ZHU Ye-biao, DONG Min-peng, CHANG Ke-ke, et al.Prolonged Anti-Bacterial Action by Sluggish Release of Ag from TiSiN/Ag Multilayer Coating[J]. Journal of Alloys and Compounds, 2019, 783: 164-172.

[49]WANG Ruo-yun, ZHOU Tong, LIU Jie, et al. Designing Novel Anti-Biofouling Coatings on Titanium Based on the Ferroelectric-Induced Strategy[J]. Materials & Design, 2021, 203: 109584.

[50]解輝, 武(wu)興偉, 劉斌(bin), 等. 鈦合金/其他金屬在海洋環境中(zhong)的電偶腐(fu)蝕行為的研究進展[J]. 材料保護, 2022,55(4): 155-166.

XIE Hui, WU Xing-wei, LIU Bin, et al. Research Progress in the Galvanic Corrosion Behavior of Titanium Alloy/other Metals in Marine Environment[J]. Materials Protection, 2022, 55(4): 155-166.

[51]張(zhang)曉云, 湯智(zhi)慧, 孫(sun)志(zhi)華, 等. 鈦(tai)合金的電(dian)偶腐蝕(shi)與防護(hu)[J]. 材料(liao)工程, 2010, 38(11): 74-78.

ZHANG Xiao-yun, TANG Zhi-hui, SUN Zhi-hua, et al. Galvanic Corrosion and Protection between Titanium Alloy and other Materials[J]. Journal of Materials Engi- neering, 2010, 38(11): 74-78.

[52]SNIHIROVA D, HICHE D, LAMAKA S, et al. Galvanic Corrosion of Ti6Al4V-AA2024 Joints in Aircraft Environment: Modelling and Experimental Validation[J]. Corrosion Science, 2019, 157: 70-78.

[53]張(zhang)曉云, 趙勝華, 湯(tang)智慧, 等(deng). 表面(mian)處理對 TC21 鈦合金(jin)與鋁合金(jin)和鋼電偶(ou)腐蝕行(xing)為的影響[J]. 材料(liao)工程,2006, 34(12): 40-45, 60.

ZHANG Xiao-yun, ZHAO Sheng-hua, TANG Zhi-hui,et al. Effect of Surface Treatment on Galvanic Corrosion between TC21 Titanium Alloy and Aluminium Alloys and Steels[J]. Journal of Materials Engineering, 2006, 34(12): 40-45, 60.

[54]周科(ke), 王樹(shu)棋, 婁霞, 等. TA15 合金微弧氧化陶瓷涂層制備與電(dian)偶(ou)腐蝕性(xing)能[J]. 表面(mian)技(ji)術, 2019, 48(7): 72-80.

ZHOU Ke, WANG Shu-qi, LOU Xia, et al. Preparation and Galvanic Corrosion Resistance of Microarc Oxidation Ceramic Coatings on TA15 Alloy[J]. Surface Technology,2019, 48(7): 72-80.

[55]尹作升(sheng), 裴和中(zhong), 張國亮, 等. 陽極極化處理對 2024 鋁合(he)金電(dian)偶腐蝕行為(wei)的影響[J]. 表(biao)面技術, 2011, 40(2):36-37.

YIN Zuo-sheng, PEI He-zhong, ZHANG Guo-liang, et al.Effect of Anodic Treatment on Galvanic Corrosion of 2024 AI Alloy[J]. Surface Technology, 2011, 40(2): 36- 37.

[56]劉建(jian)華, 吳昊, 李松梅, 等. 表面處理對 TC2 鈦合金電偶腐蝕的影(ying)響[J]. 腐蝕科學與防護技術, 2003, 15(1):13-17.

LIU Jian-hua, WU Hao, LI Song-mei, et al. Effect of Surface Treatmens on Galvanic Corrosion Behavior of Titanium Alloy TC2 Coupled with Aluminum Alloys and Steels[J]. Corrosion Science and Protection Technology,2003, 15(1): 13-17.

[57]趙(zhao)平(ping)平(ping), 宋影(ying)偉, 董凱輝, 等. 鈦-鋁連接時的電偶腐蝕及 控 制 措 施(shi) [J]. 中 國(guo) 有 色 金(jin) 屬 學 報 , 2022, 32(6):1529-1539.

ZHAO Ping-ping, SONG Ying-wei, DONG Kai-hui, et al.Galvanic Corrosion of Ti-Al Coupling and Control Measurements[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(6): 1529-1539.

[58]KOUNTOURAS D T, VOGIATZIS C A, TSOUKNIDAS A, et al. Preventing or Accelerating Galvanic Corrosion through the Application of a Proper External Magnetic Field[J]. Corrosion Engineering, Science and Technology,2014, 49(7): 603-607.

在線客服
客服電話

全國免費服務熱線
0917 - 3388692
掃一掃

jenota.com.cn
利泰金屬手機網

返回頂部

↑