亚洲中文字幕一区精品自拍_国产精品VA在线观看无码_翁吻乳婷婷小玲21章_久久久久久久精品国产亚洲87

鋯棒鋯鍛件等鋯合金表面改性工藝的研究進展

發布時間: 2024-02-25 23:30:56    瀏(liu)覽次數:

鋯(gao)(gao)(gao)(Zr)及其(qi)合金是目前較為(wei)成熟的(de)核用(yong)材料(liao),除具有優異的(de)抗(kang)輻照和(he)(he)(he)耐(nai)蝕性(xing)(xing)(xing)(xing)外,還表現出高(gao)的(de)比強度、良(liang)好的(de)尺寸穩定性(xing)(xing)(xing)(xing)及生物(wu)相容性(xing)(xing)(xing)(xing)等(deng)特性(xing)(xing)(xing)(xing),因此(ci)在航空航天、海洋艦(jian)船、化工(gong)機械和(he)(he)(he)生物(wu)植入體(ti)(ti)制造(zao)等(deng)領域也極(ji)具應用(yong)潛力[1-3]。然而(er),由于硬度、耐(nai)磨(mo)損和(he)(he)(he)抗(kang)疲勞等(deng)表面性(xing)(xing)(xing)(xing)能不(bu)佳(jia),導致(zhi)鋯(gao)(gao)(gao)合金在惡劣工(gong)況服(fu)役時經(jing)常(chang)發生表面磨(mo)損和(he)(he)(he)疲勞失效[4-5]。此(ci)外,日本福島(dao)核泄漏事件(jian)中,冷水(shui)堆(dui)故障致(zhi)使堆(dui)芯溫(wen)升加劇所(suo)造(zao)成的(de)鋯(gao)(gao)(gao)-水(shui)蒸汽(qi)反(fan)應是引發氫爆(bao)事故的(de)主要(yao)因素。為(wei)提高(gao)核反(fan)應堆(dui)的(de)整體(ti)(ti)安(an)全性(xing)(xing)(xing)(xing),需要(yao)對(dui)(dui)反(fan)應堆(dui)包(bao)殼材料(liao)的(de)抗(kang)高(gao)溫(wen)氧化和(he)(he)(he)耐(nai)蝕性(xing)(xing)(xing)(xing)等(deng)性(xing)(xing)(xing)(xing)能進(jin)一步優化。為(wei)此(ci),如何改善鋯(gao)(gao)(gao)合金的(de)表面性(xing)(xing)(xing)(xing)能以擴大其(qi)應用(yong)范圍是科(ke)研(yan)工(gong)作者(zhe)必須(xu)面對(dui)(dui)的(de)重要(yao)工(gong)程問(wen)題之(zhi)一。

所謂表(biao)(biao)面(mian)(mian)改性(xing)是指(zhi)采(cai)用化(hua)(hua)學(xue)或物理等(deng)(deng)方(fang)法,在(zai)保持(chi)材料或部件原性(xing)能(neng)的(de)(de)前提下(xia),賦予其(qi)表(biao)(biao)面(mian)(mian)高的(de)(de)耐磨、耐蝕(shi)、抗氧化(hua)(hua)及(ji)疲勞強(qiang)度等(deng)(deng)性(xing)能(neng),是進一步(bu)提高鋯(gao)(gao)(gao)合金材料表(biao)(biao)面(mian)(mian)性(xing)能(neng)的(de)(de)重要途徑。迄今為止,廣大科(ke)研人員針對(dui)鋯(gao)(gao)(gao)合金開展(zhan)了(le)多種表(biao)(biao)面(mian)(mian)改性(xing)工作(zuo),并圍繞表(biao)(biao)面(mian)(mian)改性(xing)層形(xing)成(cheng)機理、路徑規劃(hua)、組織與(yu)性(xing)能(neng)優化(hua)(hua)等(deng)(deng)方(fang)面(mian)(mian)進行(xing)了(le)大量的(de)(de)基礎性(xing)研究,擬從根(gen)本上解(jie)決鋯(gao)(gao)(gao)合金在(zai)應用過程中存在(zai)的(de)(de)弱表(biao)(biao)面(mian)(mian)性(xing)能(neng)等(deng)(deng)問題(ti)。

本文以(yi)(yi)鋯合(he)金(jin)(jin)的表(biao)面(mian)改性技術為主線,簡(jian)述(shu)了(le)鋯合(he)金(jin)(jin)中(zhong)常見表(biao)面(mian)改性制備技術的原(yuan)理、優(you)缺(que)點(dian)以(yi)(yi)及研(yan)究現狀(zhuang)和進展,重點(dian)介紹了(le)在鋯合(he)金(jin)(jin)表(biao)面(mian)改性領域(yu)中(zhong)常用的工藝(yi)方(fang)法如(ru)物(wu)理氣相沉(chen)積、激光表(biao)面(mian)處理和陽極氧化等。

1、物理氣相沉積

物理氣相(xiang)沉積(ji)(PhysicalvaPordePosition,PVD)技術(shu)是(shi)使(shi)用(yong)物理方式(shi)將靶材(cai)材(cai)料氣態(tai)化后(hou)沉積(ji)在工件表面(mian)形(xing)成一層保護(hu)膜(mo),從而達到材(cai)料表面(mian)改性的目的。

利用該種(zhong)方法在基(ji)材(cai)表面所沉(chen)積的(de)金屬、合(he)金或陶瓷(ci)等(deng)膜層大都具有致密性高、與(yu)基(ji)材(cai)的(de)結合(he)力強(qiang)及厚度可控等(deng)優點。目前,用于鋯合(he)金表面改性的(de)PVD方法主要(yao)為磁(ci)控濺射和(he)多弧離子(zi)鍍[6]。

1.1磁控濺射

磁控(kong)濺(jian)射(Magnetronsputtering,Ms)技(ji)(ji)術(shu)的(de)原理示(shi)意圖(tu)如圖(tu)1所示(shi),是利用ar+在電、磁混(hun)合場協同(tong)條件下(xia)(xia)加(jia)速并轟(hong)擊(ji)靶材,促使(shi)表面(mian)原子逸出(chu)產生濺(jian)射,進而在基(ji)底表面(mian)沉積形成(cheng)膜(mo)層(ceng)。MS技(ji)(ji)術(shu)可實(shi)現低溫、低氣(qi)壓環境下(xia)(xia)高速、大面(mian)積的(de)鍍膜(mo),且(qie)具有設備投入小、操控(kong)方便、基(ji)體(ti)損傷小和膜(mo)層(ceng)結合力(li)強等優勢,已(yi)成(cheng)為工業鍍膜(mo)的(de)主要技(ji)(ji)術(shu)之一,目前廣(guang)泛用于材料表面(mian)改性和新鍍層(ceng)的(de)開發應用[7-11]。

t1.jpg

圖(tu) 1 磁控濺射(she)原理(li)示意圖(tu) [7]

Fig. 1 Schematic diagram of magnetron sputtering [7]

鋯合(he)金(jin)的(de)(de)(de)(de)(de)(de)(de)MS技術(shu)主要(yao)圍繞成分及(ji)濺射(she)參(can)數(shu)對(dui)(dui)涂層(ceng)(ceng)(ceng)(ceng)高(gao)溫(wen)抗氧(yang)化(hua)(hua)(hua)(hua)性能(neng)的(de)(de)(de)(de)(de)(de)(de)影響展開。sidelev等(deng)[12]采(cai)(cai)用(yong)Ms技術(shu),在(zai)(zai)(zai)Zr-1nb合(he)金(jin)上沉(chen)積了(le)(le)厚(hou)度(du)約為(wei)2μm的(de)(de)(de)(de)(de)(de)(de)不同Ni、Cr含(han)量的(de)(de)(de)(de)(de)(de)(de)Ni-Cr涂層(ceng)(ceng)(ceng)(ceng),并(bing)對(dui)(dui)其進行633K氣(qi)相氫化(hua)(hua)(hua)(hua)試(shi)驗和(he)(he)(he)1173~1373K的(de)(de)(de)(de)(de)(de)(de)高(gao)溫(wen)氧(yang)化(hua)(hua)(hua)(hua)試(shi)驗。結果(guo)表(biao)(biao)明(ming)(ming),Ni含(han)量高(gao)的(de)(de)(de)(de)(de)(de)(de)涂層(ceng)(ceng)(ceng)(ceng)(>83at%)吸氫量高(gao),涂層(ceng)(ceng)(ceng)(ceng)中Cr含(han)量越高(gao),抗氧(yang)化(hua)(hua)(hua)(hua)性也越高(gao),純Cr涂層(ceng)(ceng)(ceng)(ceng)的(de)(de)(de)(de)(de)(de)(de)抗氧(yang)化(hua)(hua)(hua)(hua)性能(neng)最好(hao),分析(xi)認為(wei)是氧(yang)化(hua)(hua)(hua)(hua)產物Cr2o3阻止了(le)(le)氧(yang)向合(he)金(jin)的(de)(de)(de)(de)(de)(de)(de)進一步滲(shen)透。yeoM等(deng)[13]采(cai)(cai)用(yong)MS技術(shu)在(zai)(zai)(zai)Zr-4合(he)金(jin)表(biao)(biao)面(mian)分別沉(chen)積ZrXsiy(X∶y=1∶1,1∶2和(he)(he)(he)2∶1)涂層(ceng)(ceng)(ceng)(ceng),研究了(le)(le)涂層(ceng)(ceng)(ceng)(ceng)成分和(he)(he)(he)氬氣(qi)壓力(li)對(dui)(dui)膜層(ceng)(ceng)(ceng)(ceng)結構(gou)(gou)與(yu)(yu)(yu)抗氧(yang)化(hua)(hua)(hua)(hua)性的(de)(de)(de)(de)(de)(de)(de)影響規律。結果(guo)表(biao)(biao)明(ming)(ming),在(zai)(zai)(zai)0.53Pa下(xia)沉(chen)積的(de)(de)(de)(de)(de)(de)(de)Zrsi2涂層(ceng)(ceng)(ceng)(ceng)具(ju)有均(jun)勻(yun)致密的(de)(de)(de)(de)(de)(de)(de)微觀結構(gou)(gou),且(qie)700℃時的(de)(de)(de)(de)(de)(de)(de)高(gao)溫(wen)氧(yang)化(hua)(hua)(hua)(hua)增(zeng)重與(yu)(yu)(yu)未濺射(she)試(shi)樣相比降低(di)了(le)(le)58%,在(zai)(zai)(zai)提高(gao)輕水堆中鋯合(he)金(jin)燃料(liao)包殼的(de)(de)(de)(de)(de)(de)(de)抗氧(yang)化(hua)(hua)(hua)(hua)性方面(mian)具(ju)有重要(yao)的(de)(de)(de)(de)(de)(de)(de)應用(yong)價值,如圖2所示。王曉婧等(deng)[14]在(zai)(zai)(zai)鋯合(he)金(jin)表(biao)(biao)面(mian)制(zhi)(zhi)備了(le)(le)sic/Cr復合(he)涂層(ceng)(ceng)(ceng)(ceng),并(bing)利用(yong)劃痕試(shi)驗和(he)(he)(he)高(gao)溫(wen)水蒸(zheng)氣(qi)氧(yang)化(hua)(hua)(hua)(hua)試(shi)驗探(tan)討了(le)(le)預(yu)處理方式及(ji)MS功率參(can)數(shu)對(dui)(dui)sic/Cr復合(he)涂層(ceng)(ceng)(ceng)(ceng)的(de)(de)(de)(de)(de)(de)(de)厚(hou)度(du)、與(yu)(yu)(yu)基(ji)(ji)體附著力(li)和(he)(he)(he)表(biao)(biao)面(mian)性能(neng)的(de)(de)(de)(de)(de)(de)(de)影響。熱膨脹(zhang)系數(shu)結果(guo)表(biao)(biao)明(ming)(ming),基(ji)(ji)體與(yu)(yu)(yu)sic涂層(ceng)(ceng)(ceng)(ceng)之間(jian)(jian)存在(zai)(zai)(zai)的(de)(de)(de)(de)(de)(de)(de)Cr過渡層(ceng)(ceng)(ceng)(ceng)緩解了(le)(le)sic層(ceng)(ceng)(ceng)(ceng)和(he)(he)(he)基(ji)(ji)體之間(jian)(jian)的(de)(de)(de)(de)(de)(de)(de)數(shu)量級(ji)差異(yi),可明(ming)(ming)顯降低(di)由高(gao)應力(li)所引發的(de)(de)(de)(de)(de)(de)(de)涂層(ceng)(ceng)(ceng)(ceng)崩落現(xian)象,同時也抑(yi)制(zhi)(zhi)了(le)(le)基(ji)(ji)體在(zai)(zai)(zai)高(gao)溫(wen)水蒸(zheng)氣(qi)環境下(xia)的(de)(de)(de)(de)(de)(de)(de)氧(yang)化(hua)(hua)(hua)(hua)和(he)(he)(he)斷裂,增(zeng)加了(le)(le)涂層(ceng)(ceng)(ceng)(ceng)的(de)(de)(de)(de)(de)(de)(de)延展性。

t2.jpg

圖(tu) 2 不同成分硅化鋯(gao)涂層在 700 ℃空氣中的氧(yang)化增量 [13]

Fig. 2 Oxidation mass gain of zirconium silicate coatings with different composition in air at 700 ℃[13]

1.2電弧離子鍍

電弧(hu)離(li)子鍍(du)(arcionPlating,aiP)最早(zao)由MattoX于(yu)1964年(nian)公開,在(zai)(zai)70年(nian)代逐漸(jian)實(shi)用化。aiP技(ji)術(shu)(shu)的(de)(de)離(li)化率可達(da)90%,沉積速率較MS技(ji)術(shu)(shu)有了大幅(fu)提升(sheng),但對于(yu)質量和性能(neng)要求較高(gao)的(de)(de)厚膜(mo)層而(er)言,其沉積速率還需(xu)進一步優化[15]。一般而(er)言,弧(hu)電流、基(ji)體偏壓(ya)、沉積氣壓(ya)、沉積溫度(du)和靶基(ji)距等工(gong)藝參數(shu)均(jun)可影響(xiang)到薄膜(mo)沉積速率。ParK等[16]利用aiP技(ji)術(shu)(shu),在(zai)(zai)ar分壓(ya)1×10-2torr、弧(hu)電流150a、基(ji)體偏壓(ya)50v、溫度(du)473K的(de)(de)條件下,在(zai)(zai)Zr-4合金(jin)表面(mian)首次制備出可極大提高(gao)基(ji)體抗高(gao)溫氧化性和耐蝕(shi)性的(de)(de)均(jun)勻致(zhi)密的(de)(de)鍍(du)Cr層(厚度(du)約10μm)。為加快(kuai)沉積速率,胡(hu)小剛等[17]采用?155MM大弧(hu)源電弧(hu)在(zai)(zai)鋯合金(jin)表面(mian)制備出約20μm的(de)(de)Cr涂(tu)層,是目(mu)前公開的(de)(de)利用該方法(fa)所(suo)制備出的(de)(de)最厚單金(jin)屬(shu)層。

經(jing)1200℃×3600s的(de)氧(yang)(yang)化(hua)(hua)(hua)試驗后發現,Cr膜層(ceng)(ceng)在(zai)基體表面的(de)附著性(xing)(xing)依然良好(hao),抗(kang)氧(yang)(yang)化(hua)(hua)(hua)剝落(luo)性(xing)(xing)能優(you)異。此外,如Cr-al[18]、Fe-Cr-al[19]、MaX相(xiang)(xiang)(ti2alc、ti3alc2、Cr2alc等)[20-22]、Cr-n[23]、Cr-al-n[24]及ti-al-Cr-n[25]等合金(jin)(jin)或陶瓷涂層(ceng)(ceng)相(xiang)(xiang)繼被開(kai)發,高(gao)溫(wen)下(xia)氧(yang)(yang)化(hua)(hua)(hua)過程(cheng)中,涂層(ceng)(ceng)會生成(cheng)(cheng)致密的(de)氧(yang)(yang)化(hua)(hua)(hua)層(ceng)(ceng)(Cr2o、Cro、Cr2o3及al2o3等),抗(kang)高(gao)溫(wen)氧(yang)(yang)化(hua)(hua)(hua)能力得(de)以提(ti)升(sheng)。此外,al、Cr等合金(jin)(jin)元素(su)的(de)加(jia)入能起到細化(hua)(hua)(hua)涂層(ceng)(ceng)晶粒的(de)效果(guo),在(zai)高(gao)溫(wen)條件下(xia)氧(yang)(yang)化(hua)(hua)(hua)時所(suo)形成(cheng)(cheng)的(de)Cr、al混合氧(yang)(yang)化(hua)(hua)(hua)層(ceng)(ceng)更(geng)加(jia)均勻致密,使得(de)o向基體的(de)擴散受阻(zu),可進一(yi)步提(ti)高(gao)基體的(de)抗(kang)氧(yang)(yang)化(hua)(hua)(hua)性(xing)(xing)。

近年來(lai),科研(yan)工作(zuo)者(zhe)在aiP技術的(de)(de)(de)(de)基礎上,通過(guo)增加電弧蒸(zheng)發(fa)源(yuan)的(de)(de)(de)(de)方(fang)(fang)式來(lai)提(ti)高(gao)(gao)(gao)薄膜(mo)(mo)(mo)沉積(ji)速率,稱為多弧離(li)子鍍(du)。針對Zr-hf-Fe-Cr核用(yong)鋯(gao)合(he)金(jin)(jin),吳(wu)亞文等[24]通過(guo)模擬反應堆失水(shui)事故時的(de)(de)(de)(de)高(gao)(gao)(gao)溫氧(yang)(yang)(yang)化(hua)(hua)(hua)(hua)方(fang)(fang)法,研(yan)究了多弧離(li)子鍍(du)沉積(ji)Crtialn涂(tu)(tu)(tu)(tu)層(ceng)(ceng)在高(gao)(gao)(gao)溫氧(yang)(yang)(yang)化(hua)(hua)(hua)(hua)前后(hou)(hou)(hou)的(de)(de)(de)(de)組織演變及(ji)(ji)氧(yang)(yang)(yang)化(hua)(hua)(hua)(hua)增量(liang)行(xing)為,結(jie)果(guo)表(biao)明(ming),Crtialn涂(tu)(tu)(tu)(tu)層(ceng)(ceng)在860℃和1060℃下進(jin)行(xing)氧(yang)(yang)(yang)化(hua)(hua)(hua)(hua)過(guo)程中,依靠其(qi)形成的(de)(de)(de)(de)al2o3、Cr2o3混(hun)合(he)致(zhi)密氧(yang)(yang)(yang)化(hua)(hua)(hua)(hua)物層(ceng)(ceng)減緩了涂(tu)(tu)(tu)(tu)層(ceng)(ceng)試樣氧(yang)(yang)(yang)化(hua)(hua)(hua)(hua)過(guo)程,可(ke)有效保護(hu)鋯(gao)合(he)金(jin)(jin)基體不被氧(yang)(yang)(yang)化(hua)(hua)(hua)(hua),且經歷1h氧(yang)(yang)(yang)化(hua)(hua)(hua)(hua)后(hou)(hou)(hou)其(qi)質量(liang)增加僅(jin)為未涂(tu)(tu)(tu)(tu)層(ceng)(ceng)試樣的(de)(de)(de)(de)50%,表(biao)明(ming)其(qi)在鋯(gao)合(he)金(jin)(jin)包(bao)殼表(biao)面(mian)涂(tu)(tu)(tu)(tu)層(ceng)(ceng)制(zhi)備領域中具備較(jiao)大(da)的(de)(de)(de)(de)應用(yong)潛力。楊振等[26]利用(yong)多弧離(li)子鍍(du)技術在Zr-4合(he)金(jin)(jin)表(biao)面(mian)制(zhi)備了al2o3涂(tu)(tu)(tu)(tu)層(ceng)(ceng),經高(gao)(gao)(gao)溫高(gao)(gao)(gao)壓動水(shui)腐蝕(shi)15d后(hou)(hou)(hou),al2o3涂(tu)(tu)(tu)(tu)層(ceng)(ceng)則無明(ming)顯(xian)變化(hua)(hua)(hua)(hua),耐蝕(shi)性能較(jiao)好,但經長期高(gao)(gao)(gao)溫腐蝕(shi)后(hou)(hou)(hou),表(biao)層(ceng)(ceng)會(hui)出現(xian)(xian)少(shao)量(liang)微裂紋,分析認為在鍍(du)膜(mo)(mo)(mo)過(guo)程中引發(fa)的(de)(de)(de)(de)殘(can)余應力降低了涂(tu)(tu)(tu)(tu)層(ceng)(ceng)的(de)(de)(de)(de)熱穩定性,導致(zhi)耐蝕(shi)能力下降。此(ci)外,陰極弧蒸(zheng)發(fa)過(guo)程十分劇烈,會(hui)導致(zhi)膜(mo)(mo)(mo)層(ceng)(ceng)表(biao)面(mian)燒蝕(shi)不均而(er)出現(xian)(xian)金(jin)(jin)屬液滴(di)或微孔。科研(yan)工作(zuo)者(zhe)進(jin)一(yi)步研(yan)究發(fa)現(xian)(xian),鍍(du)膜(mo)(mo)(mo)協(xie)同后(hou)(hou)(hou)熱處理可(ke)減少(shao)或消除鍍(du)層(ceng)(ceng)的(de)(de)(de)(de)殘(can)余應力與缺陷,如嚴艷芹(qin)等[27]對沉積(ji)于鋯(gao)合(he)金(jin)(jin)表(biao)面(mian)的(de)(de)(de)(de)Cr/al涂(tu)(tu)(tu)(tu)層(ceng)(ceng)在600~800℃下進(jin)行(xing)30Min的(de)(de)(de)(de)后(hou)(hou)(hou)熱處理后(hou)(hou)(hou)發(fa)現(xian)(xian),Cr/al涂(tu)(tu)(tu)(tu)層(ceng)(ceng)表(biao)面(mian)的(de)(de)(de)(de)應力及(ji)(ji)孔隙(xi)等缺陷大(da)大(da)減少(shao),且涂(tu)(tu)(tu)(tu)層(ceng)(ceng)表(biao)面(mian)更加平滑(hua),明(ming)顯(xian)提(ti)高(gao)(gao)(gao)了涂(tu)(tu)(tu)(tu)層(ceng)(ceng)質量(liang)。

2、激光表面處理

激(ji)(ji)光(guang)(guang)表(biao)面處(chu)理(lasersurfacetreatMent,lst)技術始于20世紀60年代,時至今日已在(zai)汽車、電(dian)力(li)、機(ji)械等(deng)行業大量應(ying)用(yong)。相較于其它表(biao)面改(gai)性(xing)手段(duan),lst是利用(yong)高(gao)能(neng)高(gao)密(mi)度的激(ji)(ji)光(guang)(guang)束照射合金表(biao)面,表(biao)層充分(fen)吸收能(neng)量后在(zai)極(ji)短時間內液(ye)化后快速冷卻,從而改(gai)變表(biao)層物質(zhi)成(cheng)分(fen)和結構,最(zui)終達到改(gai)性(xing)效(xiao)果。lst技術具有加工速度快、熱影響區小、與(yu)基體結合力(li)強等(deng)優點[28]。目前,激(ji)(ji)光(guang)(guang)熔(rong)凝、激(ji)(ji)光(guang)(guang)熔(rong)覆、激(ji)(ji)光(guang)(guang)表(biao)面合金化等(deng)方法被廣(guang)泛應(ying)用(yong)于鋯(gao)合金的表(biao)面改(gai)性(xing)。

2.1激光熔凝

激(ji)光熔(rong)凝(laserMelting,lM)的(de)特點是無需添(tian)加額外元素,只需利用高(gao)能(neng)激(ji)光束(shu)使基體表面經歷快速熔(rong)化和高(gao)速冷(leng)卻過程,從而(er)獲取所需的(de)改性層(ceng)組織(zhi)。

利用(yong)lM技術可實現選擇性的加(jia)熱(re)和熔化(hua),其冷卻速度可達到105~108K.s-1,對(dui)復(fu)雜形狀(zhuang)的零(ling)件具有(you)更好的普適性[29]。

lM過(guo)(guo)程相(xiang)對(dui)比較(jiao)(jiao)劇(ju)烈,常通入高(gao)(gao)(gao)純氬氣作(zuo)為保護氣氛以(yi)避(bi)免熔(rong)凝過(guo)(guo)程中的氧化(hua)。lM處理(li)后的改(gai)(gai)性(xing)(xing)層(ceng)(ceng)常為鑄(zhu)態細晶(jing)(jing)組織,通過(guo)(guo)控制(zhi)能(neng)(neng)量(liang)輸(shu)入密度(du)和(he)(he)(he)冷卻速度(du)還可獲得(de)非(fei)(fei)晶(jing)(jing)質改(gai)(gai)性(xing)(xing)層(ceng)(ceng),且改(gai)(gai)性(xing)(xing)層(ceng)(ceng)和(he)(he)(he)熱(re)(re)影(ying)響(xiang)區(qu)會產(chan)生較(jiao)(jiao)大(da)的殘余應力。陳(chen)星等(deng)[30]通過(guo)(guo)有(you)限(xian)元軟件ansys分(fen)析了Zr65al7.5Ni10cu17.5(Zr65)非(fei)(fei)晶(jing)(jing)合(he)金(jin)(jin)lM過(guo)(guo)程中熔(rong)池和(he)(he)(he)熱(re)(re)影(ying)響(xiang)區(qu)的成形機制(zhi),結果表明(ming),單(dan)點熔(rong)凝時熔(rong)池和(he)(he)(he)熱(re)(re)影(ying)響(xiang)區(qu)的平均冷卻速率遠高(gao)(gao)(gao)于非(fei)(fei)晶(jing)(jing)形成所需的臨(lin)界冷卻速率。該團隊(dui)的研(yan)究證明(ming)了利用lM技術制(zhi)備出高(gao)(gao)(gao)純度(du)Zr65非(fei)(fei)晶(jing)(jing)合(he)金(jin)(jin)的可能(neng)(neng)性(xing)(xing),這對(dui)于表面(mian)硬度(du)及耐磨性(xing)(xing)等(deng)性(xing)(xing)能(neng)(neng)亟(ji)待提升的鋯(gao)合(he)金(jin)(jin)來說尤為重(zhong)要。yao等(deng)[31]采用連續co2激(ji)光(guang)器,在(zai)工作(zuo)功率1.2kW、激(ji)光(guang)束直徑?2MM、掃描速度(du)2MM/s的條件下對(dui)Zr-ti合(he)金(jin)(jin)表面(mian)進行lM處理(li),研(yan)究發現(xian)熔(rong)凝區(qu)組織較(jiao)(jiao)母材明(ming)顯(xian)細化(hua)和(he)(he)(he)均勻,大(da)量(liang)20~50nM的亞穩六方ω相(xiang)均勻分(fen)布在(zai)β基體中,熔(rong)凝區(qu)的顯(xian)微硬度(du)和(he)(he)(he)彈性(xing)(xing)模量(liang)較(jiao)(jiao)基體區(qu)分(fen)別提高(gao)(gao)(gao)了92.9%和(he)(he)(he)21.78%,表面(mian)性(xing)(xing)能(neng)(neng)提升效果顯(xian)著。Ji等(deng)[32]對(dui)Zr-5ti合(he)金(jin)(jin)進行lM處理(li)后發現(xian),熔(rong)凝區(qu)的α晶(jing)(jing)粒明(ming)顯(xian)細化(hua),高(gao)(gao)(gao)晶(jing)(jing)界密度(du)不(bu)僅提升了表面(mian)硬度(du),同(tong)時也降低(di)了材料的點蝕(shi)敏感性(xing)(xing)。

chai課題組[33-35]近年利(li)用nd-yag脈(mo)沖激(ji)光(guang)對(dui)Zr702和(he)Zr2.5nb等常用鋯(gao)合金(jin)進(jin)行了(le)lM處(chu)(chu)(chu)理(li),并對(dui)lM處(chu)(chu)(chu)理(li)后(hou)(hou)的(de)(de)(de)(de)截(jie)面(mian)相組成及組織演變過(guo)程進(jin)行了(le)深入的(de)(de)(de)(de)表(biao)征和(he)分(fen)析。該團(tuan)隊(dui)(dui)研(yan)究后(hou)(hou)首(shou)次發現,對(dui)Zr702合金(jin)進(jin)行特定參數的(de)(de)(de)(de)lM處(chu)(chu)(chu)理(li)后(hou)(hou),在(zai)熔凝(ning)區會出現高(gao)(gao)(gao)密(mi)度(du)的(de)(de)(de)(de)型納(na)米(mi)(mi)孿(luan)(luan)晶(jing)[35];而Zr2.5nb合金(jin)lM后(hou)(hou)的(de)(de)(de)(de)近表(biao)層還會出現納(na)米(mi)(mi)級板(ban)(ban)條(tiao)(tiao)環繞亞微米(mi)(mi)級板(ban)(ban)條(tiao)(tiao)的(de)(de)(de)(de)核-殼(ke)型雙峰板(ban)(ban)條(tiao)(tiao)結(jie)構[36]。該研(yan)究團(tuan)隊(dui)(dui)證(zheng)實了(le)lM處(chu)(chu)(chu)理(li)后(hou)(hou)除晶(jing)粒細化外,產生(sheng)的(de)(de)(de)(de)表(biao)層高(gao)(gao)(gao)密(mi)度(du)納(na)米(mi)(mi)孿(luan)(luan)晶(jing)和(he)元素固(gu)溶(rong)對(dui)基體表(biao)面(mian)性(xing)能(neng)的(de)(de)(de)(de)提升也有重要(yao)貢獻。針對(dui)Zr系合金(jin)lM過(guo)程中所產生(sheng)的(de)(de)(de)(de)殘(can)余應(ying)力,楊膠溪等[37]通過(guo)激(ji)光(guang)與后(hou)(hou)熱處(chu)(chu)(chu)理(li)協同的(de)(de)(de)(de)方(fang)式對(dui)Zr1nb合金(jin)進(jin)行了(le)工(gong)藝優化。結(jie)果表(biao)明,當在(zai)150W激(ji)光(guang)功(gong)率(lv)下處(chu)(chu)(chu)理(li)時(shi),可顯著提高(gao)(gao)(gao)Zr1nb合金(jin)表(biao)面(mian)的(de)(de)(de)(de)高(gao)(gao)(gao)溫耐蝕性(xing)能(neng),且(qie)顯微硬(ying)度(du)可提高(gao)(gao)(gao)80hv,隨后(hou)(hou)在(zai)475℃退火條(tiao)(tiao)件下,硬(ying)度(du)雖減小(xiao)了(le)約(yue)20hv,但組織更(geng)加均勻,在(zai)有效(xiao)調控殘(can)余應(ying)力的(de)(de)(de)(de)同時(shi)獲得了(le)優良的(de)(de)(de)(de)綜(zong)合力學(xue)性(xing)能(neng)。

2.2激光熔覆

激光(guang)熔覆(fu)(lasercladding,lc)是(shi)基于高能激光(guang)束在基材表(biao)面形(xing)成(cheng)熔池,熔覆(fu)材料(liao)層吸(xi)收能量(liang)后液化并(bing)與基體(ti)發(fa)生(sheng)冶金結合(he),隨后二(er)者發(fa)生(sheng)快速的液-固轉變(bian)形(xing)成(cheng)包覆(fu)層,按照熔覆(fu)材料(liao)的放置(zhi)方式可(ke)分(fen)為(wei)預置(zhi)式和(he)同(tong)步式。lc方法所獲得的熔覆(fu)層稀釋(shi)度小,組(zu)織致密(mi),可(ke)明顯(xian)改善鋯合(he)金的耐(nai)磨和(he)耐(nai)蝕性等(deng)表(biao)面性能。

但是,因(yin)為lc材(cai)料與(yu)基材(cai)之間大(da)都存在(zai)熱膨(peng)脹系(xi)數差,加之本技術冷卻(que)速度較快,易在(zai)熔(rong)覆(fu)層(ceng)產生氣孔與(yu)應力開裂現象,因(yin)此在(zai)熔(rong)覆(fu)前(qian)后大(da)都進行(xing)預熱及后熱處理KiM等(deng)[38]和Jung等(deng)[39]利用(yong)lc方法在(zai)Zr-4合(he)金(jin)(jin)表面制(zhi)(zhi)備(bei)了(le)厚為140μm、y2o3顆粒尺寸(cun)約20nM的(de)氧(yang)化(hua)物彌散強(qiang)(qiang)化(hua)結構熔(rong)覆(fu)層(ceng)。由于y2o3粒子分布均勻,加之氧(yang)化(hua)物的(de)彌散強(qiang)(qiang)化(hua)作用(yong),經lc處理后的(de)Zr-4合(he)金(jin)(jin)管在(zai)高(gao)溫(wen)下(xia)(380℃和500℃)的(de)抗(kang)拉強(qiang)(qiang)度與(yu)未處理試(shi)樣(yang)相比提高(gao)了(le)10%~20%,抗(kang)壓強(qiang)(qiang)度也提升了(le)15%以上。馬(ma)建光等(deng)[40]利用(yong)預置tin粉(fen)末的(de)方式在(zai)Zr-4合(he)金(jin)(jin)表面進行(xing)了(le)lc處理,并制(zhi)(zhi)備(bei)出了(le)由tin、Zrn、Zro2和tiZrn2等(deng)硬質陶瓷相所組成的(de)熔(rong)覆(fu)層(ceng)。

在(zai)磨(mo)損(sun)測試中,細小均(jun)勻的(de)硬(ying)質復(fu)合(he)(he)陶瓷(ci)相(xiang)組(zu)織通過(guo)釘扎阻斷(duan)了(le)磨(mo)痕(hen)的(de)繼續發(fa)展,而陶瓷(ci)相(xiang)周圍(wei)存(cun)在(zai)的(de)韌性相(xiang)可起到協調(diao)變形作用(yong),能(neng)有效(xiao)避免摩擦裂(lie)紋的(de)產生,進而提(ti)高合(he)(he)金(jin)的(de)耐(nai)磨(mo)損(sun)性能(neng)。近年(nian)來,在(zai)全新合(he)(he)金(jin)設計理念的(de)驅動下,研究學者設計出了(le)具有獨特合(he)(he)金(jin)相(xiang)結構和優(you)異(yi)的(de)抗拉強度、耐(nai)蝕及抗斷(duan)裂(lie)等(deng)性能(neng)的(de)中、高熵合(he)(he)金(jin)。自2010年(nian)開始(shi),

科研工作者開始(shi)探索利用lc方法制備(bei)中(zhong)、高熵合(he)(he)(he)金(jin)(jin),并嘗試將其熔(rong)覆(fu)(fu)在鋼、鈦和(he)銅等合(he)(he)(he)金(jin)(jin)表面,以提(ti)(ti)高硬度、耐磨(mo)、耐蝕及抗氧化性(xing)[41-42]。2020年,chai課(ke)題(ti)組(zu)[43]率先利用lc方法在Zr702合(he)(he)(he)金(jin)(jin)表面成功(gong)制備(bei)出厚度在300~800μm的(de)中(zhong)熵合(he)(he)(he)金(jin)(jin)涂(tu)層(ceng)(ceng)(nbtiZr和(he)nbtatiZr涂(tu)層(ceng)(ceng)),研究發現(xian)其所熔(rong)覆(fu)(fu)的(de)中(zhong)熵合(he)(he)(he)金(jin)(jin)層(ceng)(ceng)由單一(yi)的(de)bcc相構(gou)成,且熔(rong)覆(fu)(fu)層(ceng)(ceng)硬度更是增(zeng)加至基體硬度的(de)2.8倍,性(xing)能提(ti)(ti)升效果(guo)明顯。該課(ke)題(ti)組(zu)對中(zhong)、高熵熔(rong)覆(fu)(fu)層(ceng)(ceng)的(de)研究有望進一(yi)步提(ti)(ti)升鋯合(he)(he)(he)金(jin)(jin)在核反應(ying)堆內應(ying)對復雜、嚴苛工況的(de)能力(li),大幅增(zeng)加核反應(ying)堆運行的(de)安全性(xing)。

2.3激光表面合(he)金化

激光(guang)表面合(he)金(jin)化(hua)(lasersurfacealloying,lsa)是利(li)用具(ju)有高能(neng)高密度的(de)激光(guang)束照射(she)合(he)金(jin)表面,表層充分(fen)吸(xi)收能(neng)量后在極短(duan)時間(jian)(jian)內液化(hua)并與其它外加(jia)元(yuan)素(su)熔合(he)形成新(xin)的(de)表面合(he)金(jin)層,具(ju)有合(he)金(jin)化(hua)元(yuan)素(su)范圍寬(kuan)、加(jia)工(gong)速度快、熱(re)影響區小(xiao)、與基體結合(he)力強、可實現(xian)精準化(hua)控制(zhi)及非(fei)接觸式的(de)局(ju)部處理等優點[44]。與lc的(de)物理冶金(jin)結合(he)相比,lsa過程中(zhong)還存在基材與外加(jia)元(yuan)素(su)之間(jian)(jian)的(de)化(hua)學作(zuo)用。新(xin)合(he)金(jin)層具(ju)有比基材更好的(de)耐(nai)磨和(he)耐(nai)腐(fu)蝕等性(xing)能(neng)。此外,激光(guang)功率、光(guang)斑尺寸(cun)和(he)掃(sao)描(miao)速度及預熱(re)、后熱(re)處理等工(gong)藝之間(jian)(jian)的(de)配合(he)決定了合(he)金(jin)層的(de)質(zhi)量優劣。

lee等(deng)(deng)(deng)[45]和(he)(he)張立(li)杰(jie)等(deng)(deng)(deng)[46]利用(yong)lsa方法對(dui)Zr-4合(he)(he)(he)金(jin)(jin)開展(zhan)了(le)nb合(he)(he)(he)金(jin)(jin)化(hua)(hua)研(yan)究(jiu),結果(guo)(guo)表(biao)(biao)(biao)(biao)(biao)(biao)明(ming),在(zai)基(ji)(ji)材表(biao)(biao)(biao)(biao)(biao)(biao)面(mian)(mian)(mian)(mian)預(yu)鍍(du)nb膜后(hou)再進(jin)行(xing)(xing)不同(tong)功(gong)(gong)率(lv)(lv)的(de)lsa,可(ke)(ke)大幅提(ti)升(sheng)(sheng)其(qi)(qi)表(biao)(biao)(biao)(biao)(biao)(biao)面(mian)(mian)(mian)(mian)顯微(wei)(wei)(wei)硬(ying)(ying)度(du)和(he)(he)局部耐蝕(shi)(shi)(shi)性。如lee等(deng)(deng)(deng)[45]的(de)研(yan)究(jiu)發(fa)現(xian),Zr-4合(he)(he)(he)金(jin)(jin)在(zai)較(jiao)(jiao)高激(ji)光(guang)功(gong)(gong)率(lv)(lv)下可(ke)(ke)形成(cheng)更深更大的(de)熔池(chi),表(biao)(biao)(biao)(biao)(biao)(biao)面(mian)(mian)(mian)(mian)合(he)(he)(he)金(jin)(jin)層(ceng)主要(yao)表(biao)(biao)(biao)(biao)(biao)(biao)現(xian)為(wei)(wei)α-Zr和(he)(he)β-Zr的(de)雙相(xiang)組(zu)(zu)織。由于nb的(de)固(gu)溶(rong)強化(hua)(hua)和(he)(he)細晶強化(hua)(hua)作用(yong),使(shi)Zr-4合(he)(he)(he)金(jin)(jin)的(de)顯微(wei)(wei)(wei)硬(ying)(ying)度(du)得以提(ti)升(sheng)(sheng),且有(you)(you)效(xiao)改善了(le)其(qi)(qi)在(zai)氯化(hua)(hua)物溶(rong)液中抗局部腐蝕(shi)(shi)(shi)的(de)能(neng)力。然(ran)而(er),含nb合(he)(he)(he)金(jin)(jin)改性層(ceng)降(jiang)(jiang)低(di)了(le)Zr-4合(he)(he)(he)金(jin)(jin)在(zai)400℃蒸(zheng)汽中耐蝕(shi)(shi)(shi)性,他們認為(wei)(wei)這與(yu)β-Zr和(he)(he)Zr的(de)氫化(hua)(hua)物有(you)(you)關。張立(li)杰(jie)等(deng)(deng)(deng)[46]通過(guo)2000sM型快速軸(zhou)流co2激(ji)光(guang)器對(dui)Zr-4合(he)(he)(he)金(jin)(jin)進(jin)行(xing)(xing)激(ji)光(guang)表(biao)(biao)(biao)(biao)(biao)(biao)面(mian)(mian)(mian)(mian)nb合(he)(he)(he)金(jin)(jin)化(hua)(hua),發(fa)現(xian)表(biao)(biao)(biao)(biao)(biao)(biao)面(mian)(mian)(mian)(mian)合(he)(he)(he)金(jin)(jin)層(ceng)的(de)微(wei)(wei)(wei)觀組(zu)(zu)織由α-Zr和(he)(he)由β-Zr析(xi)出(chu)的(de)密排六方相(xiang)共同(tong)組(zu)(zu)成(cheng),極(ji)化(hua)(hua)曲線(xian)表(biao)(biao)(biao)(biao)(biao)(biao)明(ming)其(qi)(qi)在(zai)h2so4溶(rong)液(1Mol/l)中的(de)電極(ji)電位較(jiao)(jiao)基(ji)(ji)體有(you)(you)明(ming)顯提(ti)高。chen等(deng)(deng)(deng)[47-48]以預(yu)先刷鍍(du)Cr的(de)商(shang)業(ye)純(chun)Zr板(ban)材為(wei)(wei)研(yan)究(jiu)對(dui)象(xiang),采用(yong)nd-yag激(ji)光(guang)器對(dui)其(qi)(qi)進(jin)行(xing)(xing)lsa處(chu)理(li),通過(guo)調控激(ji)光(guang)功(gong)(gong)率(lv)(lv)參數實(shi)現(xian)了(le)cP-Zr的(de)表(biao)(biao)(biao)(biao)(biao)(biao)面(mian)(mian)(mian)(mian)Cr合(he)(he)(he)金(jin)(jin)化(hua)(hua)。研(yan)究(jiu)發(fa)現(xian)在(zai)經激(ji)光(guang)功(gong)(gong)率(lv)(lv)為(wei)(wei)200W的(de)lsa處(chu)理(li)后(hou)的(de)合(he)(he)(he)金(jin)(jin)出(chu)現(xian)了(le)5種不同(tong)微(wei)(wei)(wei)觀結構(gou)的(de)區(qu)域,包含等(deng)(deng)(deng)軸(zhou)組(zu)(zu)織和(he)(he)柱狀(zhuang)組(zu)(zu)織兩個(ge)重(zhong)熔區(qu)、馬(ma)氏體板(ban)條和(he)(he)馬(ma)氏體板(ban)條+塊狀(zhuang)α晶粒兩個(ge)固(gu)態(tai)相(xiang)變(bian)區(qu)、未(wei)變(bian)化(hua)(hua)基(ji)(ji)體區(qu)。基(ji)(ji)于Cr在(zai)α-Zr中的(de)固(gu)溶(rong)硬(ying)(ying)化(hua)(hua)和(he)(he)晶粒細化(hua)(hua),合(he)(he)(he)金(jin)(jin)層(ceng)的(de)最大硬(ying)(ying)度(du)可(ke)(ke)達約468hv,較(jiao)(jiao)基(ji)(ji)體提(ti)升(sheng)(sheng)了(le)約2.4倍(bei)。yang等(deng)(deng)(deng)[49]首先對(dui)Zr-nb合(he)(he)(he)金(jin)(jin)表(biao)(biao)(biao)(biao)(biao)(biao)面(mian)(mian)(mian)(mian)進(jin)行(xing)(xing)微(wei)(wei)(wei)弧氧化(hua)(hua)Zro2,隨后(hou)開展(zhan)lsa處(chu)理(li)并進(jin)行(xing)(xing)了(le)高溫腐蝕(shi)(shi)(shi)性能(neng)測試,結果(guo)(guo)表(biao)(biao)(biao)(biao)(biao)(biao)明(ming)lsa處(chu)理(li)后(hou)可(ke)(ke)以降(jiang)(jiang)低(di)表(biao)(biao)(biao)(biao)(biao)(biao)面(mian)(mian)(mian)(mian)粗(cu)糙度(du)和(he)(he)提(ti)高預(yu)氧化(hua)(hua)膜的(de)致密性,在(zai)預(yu)置氧化(hua)(hua)膜的(de)外表(biao)(biao)(biao)(biao)(biao)(biao)面(mian)(mian)(mian)(mian)形成(cheng)了(le)致密的(de)阻(zu)擋層(ceng),在(zai)高壓釜(fu)中腐蝕(shi)(shi)(shi)94天后(hou),lsa試樣腐蝕(shi)(shi)(shi)增(zeng)量明(ming)顯降(jiang)(jiang)低(di),耐高溫腐蝕(shi)(shi)(shi)性能(neng)顯著提(ti)高。

本課題組近(jin)年(nian)利用(yong)nd-yag脈沖激光器對(dui)Zr702[50]和(he)(he)Zrtialv[51]等合(he)(he)金(jin)進行(xing)了激光氣體氮化(hua)(lasergasNitriding,lgn)處(chu)理,并(bing)較(jiao)為深(shen)入的(de)(de)表征和(he)(he)分析了lgn處(chu)理后(hou)的(de)(de)截面組織和(he)(he)性能演變。圖3為Zrtialv合(he)(he)金(jin)在不(bu)(bu)同(tong)激光功率參(can)數(shu)下(xia)重(zhong)熔(rong)區(qu)、熱(re)影響區(qu)(aaZ)的(de)(de)微觀形貌及厚度(du)(du)(du)(du),可(ke)以看到當激光功率從120W逐(zhu)漸增加到240W時(shi)(shi),重(zhong)熔(rong)區(qu)和(he)(he)熱(re)影響區(qu)的(de)(de)厚度(du)(du)(du)(du)逐(zhu)漸增加,重(zhong)熔(rong)區(qu)厚度(du)(du)(du)(du)可(ke)達934μm,且氮化(hua)物枝晶越發致密,這與(yu)逐(zhu)漸增加的(de)(de)能量密度(du)(du)(du)(du)輸入導(dao)致熔(rong)池深(shen)度(du)(du)(du)(du)增加和(he)(he)合(he)(he)金(jin)化(hua)反應劇烈程度(du)(du)(du)(du)增大有關。Zrtialv合(he)(he)金(jin)經lgn處(chu)理后(hou)的(de)(de)顯微硬(ying)度(du)(du)(du)(du)分布(bu)如(ru)圖4所示,激光功率為240W時(shi)(shi),重(zhong)熔(rong)區(qu)具有最高(gao)(gao)(gao)的(de)(de)顯微硬(ying)度(du)(du)(du)(du)(約934hv),高(gao)(gao)(gao)致密高(gao)(gao)(gao)硬(ying)度(du)(du)(du)(du)的(de)(de)陶(tao)瓷Zrn/tin枝晶對(dui)硬(ying)度(du)(du)(du)(du)的(de)(de)提升(sheng)起(qi)到了關鍵作用(yong),同(tong)時(shi)(shi)發現在不(bu)(bu)同(tong)的(de)(de)激光參(can)數(shu)下(xia),熱(re)影響區(qu)的(de)(de)顯微硬(ying)度(du)(du)(du)(du)差別(bie)不(bu)(bu)大,造成微小差異的(de)(de)原因為α板條寬度(du)(du)(du)(du)和(he)(he)β相含量的(de)(de)改(gai)變。

t3.jpg

圖 3 ZrTiAlV 合金在不(bu)同(tong)激(ji)光(guang)功率下的橫截面微觀(guan)組織

(a)240 W;(b)180 W;(c)120 W;(d)各區(qu)域厚(hou)度 [51]

Fig. 3 Cross?sectional microstructure of the ZrTiAIV alloy at various laser powers

(a) 120 W; (b) 180 W; (c) 240 W; (d) average thickness of RMZ and HAZ at different laser power [51]

t4.jpg

圖(tu) 4 不同(tong)激光功率下 ZrTiAlV 合金的顯微硬度分(fen)布 [51]

Fig. 4 Microhardness distribution of Zr

需要注意(yi)的(de)(de)(de)是(shi),經lst處理(li)后(hou)所得到的(de)(de)(de)表面(mian)(mian)改(gai)性層(ceng)(ceng)組(zu)(zu)(zu)(zu)織中既(ji)存(cun)在(zai)位錯、晶格(ge)畸變以及(ji)非平衡晶界等不穩定(ding)(ding)因素,也(ye)存(cun)在(zai)激光誘(you)導殘余(yu)(yu)應(ying)(ying)力場,處于熱(re)力學亞(ya)穩狀態(tai)[52-53]。后(hou)熱(re)處理(li)過程雖(sui)可消除或降低殘余(yu)(yu)應(ying)(ying)力,但極易(yi)改(gai)變表面(mian)(mian)改(gai)性層(ceng)(ceng)及(ji)基體的(de)(de)(de)相組(zu)(zu)(zu)(zu)成與組(zu)(zu)(zu)(zu)織結(jie)構(gou),進(jin)而改(gai)變材料的(de)(de)(de)整(zheng)體性能[54-55]。因此,協(xie)調熱(re)作用(yong)過程中表面(mian)(mian)改(gai)性層(ceng)(ceng)的(de)(de)(de)穩定(ding)(ding)性與基體組(zu)(zu)(zu)(zu)織性能之間的(de)(de)(de)關系(xi),實現(xian)激光誘(you)導殘余(yu)(yu)應(ying)(ying)力與表面(mian)(mian)改(gai)性層(ceng)(ceng)和基體組(zu)(zu)(zu)(zu)織的(de)(de)(de)協(xie)同優化,對獲取組(zu)(zu)(zu)(zu)織結(jie)構(gou)優異的(de)(de)(de)高穩定(ding)(ding)表面(mian)(mian)改(gai)性鋯基合金,促進(jin)其在(zai)特殊環境中的(de)(de)(de)工業化應(ying)(ying)用(yong)具有重要的(de)(de)(de)理(li)論價值,也(ye)是(shi)今后(hou)需要開展的(de)(de)(de)研(yan)究方(fang)向。

3、陽極氧化和微弧氧化

鋯(gao)合金的陽極(ji)氧化(anodicoXidation,ao)是將基材置入恰當(dang)的電(dian)解液(ye)中作為(wei)陽極(ji),在外加(jia)電(dian)流(liu)作用(yong)下,使其表面發生(sheng)(sheng)氧化反應并(bing)生(sheng)(sheng)成具有一(yi)定厚度(du)的致密氧化膜,從而提升合金的耐磨和耐蝕性等表面性能。ao原理(li)示意(yi)圖(tu)如(ru)圖(tu)5所示,核(he)心是利用(yong)缺陷機制并(bing)通過(guo)氧的遷移實現整(zheng)個過(guo)程,鋯(gao)的陽極(ji)氧化電(dian)化學反應為(wei):

陽極:Zr+2h2o=Zro2+4h++4e-

陰極:2h++2e-=h2

t5.jpg

圖 5 陽極(ji)氧化(hua)原理示意(yi)圖

Fig. 5 Schematic diagram of anodic oxidation

徐榮清等(deng)[56]分別(bie)在(zai)(zai)(zai)無機水(shui)溶(rong)液(ye)和(he)有機水(shui)溶(rong)液(ye)中(zhong)(zhong)對(dui)(dui)純鋯(gao)進行ao處(chu)理(li)(li)(li),并(bing)對(dui)(dui)制(zhi)(zhi)備(bei)的(de)(de)(de)氧(yang)(yang)化(hua)(hua)(hua)鋯(gao)納米管(guan)進行了(le)比(bi)較(jiao)研究。結(jie)果(guo)表明,在(zai)(zai)(zai)有機水(shui)溶(rong)液(ye)中(zhong)(zhong)可(ke)制(zhi)(zhi)備(bei)出(chu)直徑為(wei)?0.2μm的(de)(de)(de)非晶態氧(yang)(yang)化(hua)(hua)(hua)鋯(gao)納米管(guan),經(jing)(jing)400℃退火(huo)后(hou),無定(ding)型的(de)(de)(de)非晶態可(ke)轉換(huan)為(wei)單(dan)斜+四方(fang)結(jie)構(gou)的(de)(de)(de)混(hun)合(he)(he)相。與經(jing)(jing)無機水(shui)溶(rong)液(ye)中(zhong)(zhong)的(de)(de)(de)ao處(chu)理(li)(li)(li)相比(bi),純鋯(gao)表面在(zai)(zai)(zai)有機溶(rong)液(ye)中(zhong)(zhong)制(zhi)(zhi)備(bei)出(chu)的(de)(de)(de)氧(yang)(yang)化(hua)(hua)(hua)鋯(gao)納米管(guan)排列緊密且(qie)管(guan)壁光滑、均勻。李玲等(deng)[57]在(zai)(zai)(zai)含(han)有丙三醇(chun)和(he)nh4F的(de)(de)(de)水(shui)溶(rong)液(ye)中(zhong)(zhong)利用ao方(fang)法(fa)在(zai)(zai)(zai)Zr-17nb合(he)(he)金表面制(zhi)(zhi)備(bei)出(chu)了(le)規(gui)律(lv)排布的(de)(de)(de)納米管(guan)陣列,在(zai)(zai)(zai)對(dui)(dui)氧(yang)(yang)化(hua)(hua)(hua)鋯(gao)的(de)(de)(de)結(jie)構(gou)、形貌(mao)和(he)成(cheng)分進行了(le)詳細研究后(hou)發(fa)現(xian)在(zai)(zai)(zai)70v的(de)(de)(de)外(wai)加恒(heng)定(ding)電壓條件下,ao過程中(zhong)(zhong)Zr和(he)nb的(de)(de)(de)氧(yang)(yang)化(hua)(hua)(hua)溶(rong)解速(su)率相同(tong)。在(zai)(zai)(zai)經(jing)(jing)450℃退火(huo)后(hou)氧(yang)(yang)化(hua)(hua)(hua)鋯(gao)膜層由二氧(yang)(yang)化(hua)(hua)(hua)鋯(gao)和(he)鈮鋯(gao)氧(yang)(yang)化(hua)(hua)(hua)物(wu)組成(cheng)。性(xing)能測試結(jie)果(guo)表明,氧(yang)(yang)化(hua)(hua)(hua)鋯(gao)膜層具(ju)有較(jiao)低(di)的(de)(de)(de)彈性(xing)模(mo)量(liang)(liang)和(he)較(jiao)高的(de)(de)(de)硬度,且(qie)表面水(shui)接觸(chu)角(jiao)較(jiao)小(xiao),可(ke)呈現(xian)出(chu)更(geng)好的(de)(de)(de)親(qin)水(shui)性(xing)能。soWa等(deng)[58]研究了(le)硫(liu)(liu)酸溶(rong)液(ye)中(zhong)(zhong)Zr的(de)(de)(de)恒(heng)流陽(yang)極(ji)氧(yang)(yang)化(hua)(hua)(hua)對(dui)(dui)表面化(hua)(hua)(hua)學成(cheng)分和(he)耐(nai)蝕性(xing)能的(de)(de)(de)影響。結(jie)果(guo)表明,ao處(chu)理(li)(li)(li)后(hou)可(ke)在(zai)(zai)(zai)表面形成(cheng)硫(liu)(liu)酸氧(yang)(yang)化(hua)(hua)(hua)鋯(gao)。研究發(fa)現(xian),在(zai)(zai)(zai)電壓為(wei)80v時表面硫(liu)(liu)含(han)量(liang)(liang)最(zui)高,當電壓高于(yu)80v時形成(cheng)的(de)(de)(de)陽(yang)極(ji)氧(yang)(yang)化(hua)(hua)(hua)層所具(ju)有的(de)(de)(de)硫(liu)(liu)含(han)量(liang)(liang)降低(di),并(bing)提高了(le)表面的(de)(de)(de)耐(nai)蝕性(xing)能。

微弧氧化(MiCroarcoXidation,Mao)法是(shi)將(jiang)鋯(gao)或鋯(gao)合金放(fang)在(zai)強電(dian)場的電(dian)解液中(zhong),作(zuo)為陽極的Zr金屬或合金表面在(zai)強電(dian)壓作(zuo)用下使(shi)局(ju)部產生(sheng)(sheng)高溫(wen)高壓,Zr或合金元素原子與溶(rong)液中(zhong)的o結合生(sheng)(sheng)成陶瓷(ci)氧化物膜(mo)層。與ad方(fang)(fang)法相比,Mao方(fang)(fang)法具(ju)有大電(dian)壓、大電(dian)流的特點(dian),且溶(rong)解速度更加快(kuai)速,具(ju)體(ti)對(dui)比如表1所示。

未標題-2.jpg

薛文斌(bin)等[59]采用交流Mao法在Zr5.62re合(he)(he)金表(biao)面(mian)制備出雙層結(jie)構(內層以Zro2為主(zhu)(zhu),外層以sio2為主(zhu)(zhu))的(de)(de)(de)(de)(de)(de)陶(tao)瓷膜(mo),致密性(xing)高(gao)且厚度(du)可達約(yue)240μm。與未經Mao處(chu)理的(de)(de)(de)(de)(de)(de)試樣(yang)相比,具有致密陶(tao)瓷膜(mo)的(de)(de)(de)(de)(de)(de)Zr5.62re合(he)(he)金,其自腐蝕(shi)電(dian)(dian)位可增加至-0.185v,同(tong)時(shi)自腐蝕(shi)電(dian)(dian)流密度(du)降(jiang)低(di)了約(yue)10倍,耐(nai)蝕(shi)性(xing)能(neng)優化明顯(xian)。Zou等[60]以Zr-1nb合(he)(he)金為研究對象(xiang),探討了Mao電(dian)(dian)壓(ya)(ya)對表(biao)面(mian)保護膜(mo)組織(zhi)和性(xing)能(neng)的(de)(de)(de)(de)(de)(de)影響。結(jie)果表(biao)明,放(fang)電(dian)(dian)電(dian)(dian)壓(ya)(ya)不會影響到(dao)表(biao)面(mian)氧化膜(mo)的(de)(de)(de)(de)(de)(de)相組成(cheng)(cheng),均由單斜相Zro2和四方相Zro2組成(cheng)(cheng),但(dan)單斜相Zro2的(de)(de)(de)(de)(de)(de)含量遠高(gao)于四方相Zro2。硬(ying)度(du)測(ce)試結(jie)果證實,經Mao處(chu)理后的(de)(de)(de)(de)(de)(de)表(biao)面(mian)硬(ying)度(du)約(yue)570hv,是基(ji)體硬(ying)度(du)的(de)(de)(de)(de)(de)(de)約(yue)2.3倍,而極化曲線(xian)和阻抗結(jie)果顯(xian)示(shi),Mao處(chu)理試樣(yang)具有較(jiao)低(di)的(de)(de)(de)(de)(de)(de)腐蝕(shi)電(dian)(dian)流密度(du)和較(jiao)高(gao)的(de)(de)(de)(de)(de)(de)阻抗。阻抗結(jie)果及分析說明,在Zr-1nb合(he)(he)金中,Mao膜(mo)的(de)(de)(de)(de)(de)(de)內致密層能(neng)顯(xian)著提高(gao)合(he)(he)金的(de)(de)(de)(de)(de)(de)耐(nai)蝕(shi)性(xing)。

作(zuo)為一(yi)種新型的表面(mian)處理技術,Mao方(fang)法具有對(dui)材料(liao)的適應性較寬、對(dui)基底材料(liao)熱(re)(re)輸入小、操作(zuo)簡單、占地面(mian)積小、無污染(ran)和(he)生產效率高(gao)等優(you)勢(shi),在航空(kong)航天和(he)電子機械等領域的應用前景巨大。但本方(fang)法所需(xu)的氧化電壓極高(gao),且電解液(ye)的溫升快,對(dui)熱(re)(re)交(jiao)換設備(bei)和(he)操作(zuo)過程要求較高(gao),工(gong)藝和(he)設備(bei)還需(xu)進一(yi)步(bu)優(you)化和(he)改(gai)善[61]。

4、離子注入

離(li)子(zi)注(zhu)入(ru)(ioniMPlantation,ion)法發展(zhan)于20世紀70年(nian)代,是在(zai)超高電壓下,將(jiang)所(suo)需元(yuan)素(su)原子(zi)在(zai)離(li)子(zi)注(zhu)入(ru)機中電離(li)加速,獲得(de)較高的能量后(hou)注(zhu)入(ru)到基(ji)材表(biao)面的一種(zhong)改性技術[62],其原理示意圖如圖6所(suo)示。

t6.jpg

圖(tu) 6 離子注入原理示意圖(tu)

Fig. 6 Schematic diagram of ion implantation

前(qian)期,彭德全等[63-64]利用(yong)ion法開展了大量的(de)(de)(de)諸如Mo、la等離(li)子對鋯或鋯合(he)(he)金(jin)的(de)(de)(de)抗(kang)高(gao)(gao)溫氧(yang)化(hua)(hua)性(xing)(xing)能及腐(fu)蝕(shi)(shi)行(xing)為等影(ying)響的(de)(de)(de)研究,并證實了恰當(dang)(dang)(dang)地(di)選擇Mo、la等離(li)子注(zhu)入(ru)(ru)量能明(ming)(ming)(ming)顯優(you)(you)化(hua)(hua)其表(biao)(biao)面(mian)性(xing)(xing)能。針(zhen)對純Zr和(he)Zr-4合(he)(he)金(jin),Peng等[65-66]探索了y、ce、la等不同(tong)離(li)子注(zhu)入(ru)(ru)對其耐(nai)蝕(shi)(shi)和(he)氧(yang)化(hua)(hua)性(xing)(xing)能的(de)(de)(de)影(ying)響。XPs結(jie)果(guo)顯示,基(ji)材表(biao)(biao)面(mian)氧(yang)化(hua)(hua)物主要以y2o3、ce2o3和(he)la2o3為主。研究表(biao)(biao)明(ming)(ming)(ming)當(dang)(dang)(dang)注(zhu)入(ru)(ru)1×1016~1×1017ions/cM2劑量的(de)(de)(de)y和(he)ce時(shi),均能明(ming)(ming)(ming)顯改善(shan)Zr-4合(he)(he)金(jin)的(de)(de)(de)抗(kang)氧(yang)化(hua)(hua)性(xing)(xing)能,當(dang)(dang)(dang)y+la注(zhu)入(ru)(ru)量為5×1016ions/cM2時(shi),自腐(fu)蝕(shi)(shi)電流(liu)密度最低,y2o3和(he)la2o3能起到明(ming)(ming)(ming)顯的(de)(de)(de)阻(zu)隔和(he)氧(yang)化(hua)(hua)保護(hu)作用(yong)。陳(chen)小文等[67]研究了鋯在(zai)y離(li)子注(zhu)入(ru)(ru)后(hou)的(de)(de)(de)動電位極化(hua)(hua)曲線(xian),發(fa)現y離(li)子注(zhu)入(ru)(ru)后(hou)能在(zai)試樣(yang)表(biao)(biao)面(mian)形成(cheng)以Zro2和(he)y2o3為主的(de)(de)(de)氧(yang)化(hua)(hua)膜,這顯著(zhu)降低了鋯在(zai)不同(tong)Ph值溶液中的(de)(de)(de)自腐(fu)蝕(shi)(shi)電流(liu)密度,耐(nai)蝕(shi)(shi)性(xing)(xing)能優(you)(you)化(hua)(hua)明(ming)(ming)(ming)顯。分(fen)析原因是由于(yu)氧(yang)化(hua)(hua)物顆(ke)粒(li)均勻(yun)彌散(san)在(zai)鋯的(de)(de)(de)表(biao)(biao)層,減緩了鋯基(ji)體的(de)(de)(de)溶解與擴散(san),進而使腐(fu)蝕(shi)(shi)速度下降。sharMa等[68]嘗試將n+離(li)子注(zhu)入(ru)(ru)到Zr55cu30Ni5al10非(fei)晶合(he)(he)金(jin)表(biao)(biao)面(mian),他們發(fa)現離(li)子注(zhu)入(ru)(ru)N后(hou)會使表(biao)(biao)面(mian)成(cheng)分(fen)和(he)化(hua)(hua)學(xue)鍵(jian)結(jie)構發(fa)生變化(hua)(hua),并形成(cheng)新的(de)(de)(de)亞穩(wen)態Zrn和(he)Zro2化(hua)(hua)合(he)(he)物和(he)合(he)(he)金(jin)層。同(tong)時(shi),顯著(zhu)提高(gao)(gao)了Zr55cu30Ni5al10非(fei)晶合(he)(he)金(jin)的(de)(de)(de)耐(nai)蝕(shi)(shi)和(he)熱穩(wen)定等性(xing)(xing)能。

Ion法(fa)突破了(le)(le)傳(chuan)統冶金(jin)的(de)規律,使(shi)很難互溶的(de)金(jin)屬形(xing)成了(le)(le)新的(de)合(he)金(jin)相,增強(qiang)了(le)(le)耐蝕、抗磨性能(neng),并增加了(le)(le)合(he)金(jin)的(de)使(shi)用壽命。但本(ben)方法(fa)易產生離子輻照(zhao)損傷(shang),形(xing)成高濃度的(de)空位團,而在后(hou)續的(de)退(tui)火過程(cheng)中也(ye)不易被消除(chu)。當離子注(zhu)入劑量足夠高時,損傷(shang)區域的(de)重疊(die)還會導致非(fei)晶化現象。離子輻照(zhao)損傷(shang)的(de)機理及優化研究是當前研究的(de)熱點之一。

5、其它表面改性方法

近年來,高壓釜預膜、化(hua)學鍍、冷噴涂、噴丸和表面(mian)復(fu)合(he)(he)處(chu)理(li)等技(ji)術也應用在鋯及鋯合(he)(he)金的表面(mian)改性過程(cheng)中,并取得(de)了豐碩(shuo)的研究成果。

5.1高壓釜預膜

高壓釜預膜(mo)法在(zai)鋯合金(jin)中(zhong)的(de)(de)應用起步(bu)較(jiao)早。該方法是將鋯合金(jin)工(gong)件表面(mian)預先進行(xing)酸洗處理,隨(sui)后(hou)放入存有過熱蒸汽的(de)(de)高壓釜內(nei),一定(ding)時間(jian)后(hou)可(ke)在(zai)表面(mian)形(xing)成一層致密的(de)(de)四方相(xiang)(xiang)與單斜(xie)相(xiang)(xiang)混雜的(de)(de)Zro2氧化膜(mo)[69]。

張(zhang)小帆(fan)等[70]采(cai)用高壓釜預膜在(zai)鉭(tan)管(guan)與Zr-4合金的焊縫處(chu)制備(bei)了一層(ceng)大約1μm厚的致密黑色(se)氧(yang)化(hua)膜,并(bing)對其在(zai)熔融Pbbi合金中(zhong)進行(xing)長(chang)達100h的腐蝕試驗。

結果表(biao)(biao)明(ming),與未預(yu)(yu)生(sheng)膜(mo)的(de)試樣相(xiang)比,經(jing)預(yu)(yu)生(sheng)膜(mo)的(de)試樣可減緩熔融(rong)Pbbi合金的(de)侵(qin)蝕(shi),腐蝕(shi)程(cheng)度(du)較(jiao)輕。趙(zhao)文金等[71]對(dui)比了經(jing)過(guo)酸洗(xi)預(yu)(yu)膜(mo)、酸洗(xi)不預(yu)(yu)膜(mo)、不酸洗(xi)預(yu)(yu)膜(mo)、不酸洗(xi)不預(yu)(yu)膜(mo)的(de)Zr-4合金管材在(zai)500℃過(guo)熱水蒸氣中的(de)腐蝕(shi)行為,結果表(biao)(biao)明(ming),經(jing)過(guo)酸洗(xi)預(yu)(yu)膜(mo)的(de)管材抗癤狀(zhuang)腐蝕(shi)性能最好(hao)。他們(men)認(ren)為酸洗(xi)過(guo)程(cheng)會使(shi)機械拋光產生(sheng)的(de)表(biao)(biao)面形變層消失并發(fa)揮出較(jiao)好(hao)的(de)表(biao)(biao)面清潔(jie)作(zuo)用,而經(jing)過(guo)預(yu)(yu)膜(mo)處理后又重(zhong)新加熱導致膜(mo)層與基體之間界(jie)面應力改變,最終造成癤狀(zhuang)腐蝕(shi)的(de)速度(du)下(xia)降(jiang)。

5.2化學鍍

化(hua)(hua)(hua)(hua)學(xue)(xue)(xue)鍍(du)(du)(du)(du)是通過(guo)氧化(hua)(hua)(hua)(hua)還原反(fan)應(ying)(ying)使鍍(du)(du)(du)(du)液(ye)中(zhong)的(de)(de)(de)金屬離子還原并(bing)沉(chen)積在(zai)工件(jian)表(biao)面(mian)形成(cheng)鍍(du)(du)(du)(du)層。馬靜(jing)等[72]和(he)國棟等[73]采用除油+酸(suan)洗(xi)+磷化(hua)(hua)(hua)(hua)方式對Zral合金表(biao)面(mian)進(jin)行預處(chu)(chu)理,隨后再(zai)進(jin)行酸(suan)性化(hua)(hua)(hua)(hua)學(xue)(xue)(xue)鍍(du)(du)(du)(du),以(yi)此制(zhi)備出(chu)了(le)12~15μm的(de)(de)(de)Ni-P膜(mo)層,研究發現酸(suan)洗(xi)粗(cu)化(hua)(hua)(hua)(hua)處(chu)(chu)理能夠促進(jin)磷化(hua)(hua)(hua)(hua)處(chu)(chu)理的(de)(de)(de)進(jin)行,從而提高(gao)(gao)膜(mo)層與(yu)基體(ti)的(de)(de)(de)結合力與(yu)有效接觸表(biao)面(mian)積。此外(wai),與(yu)未處(chu)(chu)理試樣相比(bi),鍍(du)(du)(du)(du)Ni-P試樣的(de)(de)(de)顯微硬度提高(gao)(gao)了(le)50%以(yi)上,抗腐蝕性也(ye)有所提高(gao)(gao)。相較(jiao)于傳統電鍍(du)(du)(du)(du)法,化(hua)(hua)(hua)(hua)學(xue)(xue)(xue)鍍(du)(du)(du)(du)的(de)(de)(de)最大(da)(da)優勢在(zai)于其無外(wai)加(jia)電流,生產成(cheng)本(ben)降(jiang)低。但是,利用本(ben)方法所制(zhi)備的(de)(de)(de)膜(mo)層普遍存在(zai)與(yu)基體(ti)結合力不高(gao)(gao)、耐磨(mo)性較(jiao)差的(de)(de)(de)問題(ti),而且化(hua)(hua)(hua)(hua)學(xue)(xue)(xue)鍍(du)(du)(du)(du)過(guo)程(cheng)中(zhong)所添加(jia)的(de)(de)(de)絡合劑對水資源(yuan)污(wu)染較(jiao)大(da)(da),如(ru)何解決廢(fei)水問題(ti)依然是阻(zu)礙(ai)化(hua)(hua)(hua)(hua)學(xue)(xue)(xue)鍍(du)(du)(du)(du)工業化(hua)(hua)(hua)(hua)應(ying)(ying)用的(de)(de)(de)一大(da)(da)障礙(ai)。

5.3冷噴涂

冷噴(pen)(pen)(pen)涂工藝(yi)具(ju)有(you)顆粒(li)噴(pen)(pen)(pen)射(she)速度極快(kuai)、涂層(ceng)氣(qi)(qi)孔率很低(di)、沉(chen)積速率高(gao)(gao)、工藝(yi)溫度低(di)、對基體(ti)(ti)的(de)熱影響小且可減少(shao)材料的(de)氧化(hua)等優點[74-75]。Maier等[21]使(shi)用(yong)(yong)冷噴(pen)(pen)(pen)涂技術在Zr-4合金表(biao)面上沉(chen)積了ti2alc涂層(ceng)。摩擦磨損試(shi)驗結果(guo)表(biao)明該(gai)涂層(ceng)的(de)硬度與基體(ti)(ti)相(xiang)比提升(sheng)率可達到(dao)400%。他(ta)們對冷噴(pen)(pen)(pen)涂前后(hou)的(de)試(shi)樣進行了700℃的(de)高(gao)(gao)溫空(kong)氣(qi)(qi)氧化(hua)及1005℃高(gao)(gao)溫蒸汽(qi)試(shi)驗,測(ce)試(shi)結果(guo)表(biao)明,冷噴(pen)(pen)(pen)涂試(shi)樣具(ju)有(you)10μm厚的(de)氧化(hua)涂層(ceng)使(shi)其抗(kang)氧化(hua)性能(neng)更(geng)加突出,能(neng)顯著延長核燃料包殼的(de)使(shi)用(yong)(yong)壽命。

?evecˇeK等[76]開展了Cr沉積(ji)于Zr-4合金表面(mian)的(de)(de)研究,發(fa)現試(shi)樣(yang)邊緣的(de)(de)Zr氧化(hua)物厚度(du)(du)為55μm,即使厚度(du)(du)很薄,Cr涂(tu)層(ceng)也能保持穩(wen)定,500℃高溫下(xia)有效保護了基(ji)材不(bu)受蒸汽(qi)氧化(hua)的(de)(de)影響,連續氧化(hua)試(shi)驗進行20d后,增量(liang)僅為未沉積(ji)涂(tu)層(ceng)試(shi)樣(yang)的(de)(de)16%。需要注(zhu)意的(de)(de)是,冷噴涂(tu)工作(zuo)環境惡劣,且涂(tu)層(ceng)厚度(du)(du)難以(yi)精確控制。因此,優化(hua)設備、工藝路徑及參數,以(yi)減少污染、實現涂(tu)層(ceng)厚度(du)(du)的(de)(de)精確控制是未來的(de)(de)發(fa)展方向(xiang)之一。

5.4噴丸處理

噴(pen)丸(wan)處(chu)理是將高(gao)速彈(dan)丸(wan)流噴(pen)射到(dao)零件表(biao)面致使其發生塑性變形而形成具(ju)有(you)較(jiao)高(gao)殘余壓應力(li)(li)的(de)(de)強(qiang)化(hua)層,零件承受載荷過程中可(ke)抵消(xiao)部分外界應力(li)(li),進而提高(gao)疲勞強(qiang)度。胡英俊等[77]研(yan)究(jiu)了噴(pen)丸(wan)處(chu)理對(dui)Zirlo鋯(gao)合金(jin)微(wei)動(dong)磨(mo)損(sun)及抗(kang)腐蝕(shi)(shi)性能的(de)(de)影響(xiang)。結(jie)果表(biao)明,噴(pen)丸(wan)處(chu)理后Zirlo鋯(gao)合金(jin)的(de)(de)磨(mo)損(sun)體積相(xiang)對(dui)于(yu)原始(shi)試(shi)樣(yang)可(ke)減少5.7%,抗(kang)微(wei)動(dong)磨(mo)損(sun)性有(you)所提高(gao)。此外,lioh腐蝕(shi)(shi)試(shi)驗表(biao)明,只有(you)當腐蝕(shi)(shi)進行到(dao)一定階(jie)段(duan)時,噴(pen)丸(wan)強(qiang)化(hua)的(de)(de)耐蝕(shi)(shi)效果才(cai)開始(shi)體現。目(mu)前,國內外對(dui)于(yu)鋯(gao)合金(jin)噴(pen)丸(wan)強(qiang)化(hua)的(de)(de)抗(kang)腐蝕(shi)(shi)機理研(yan)究(jiu)較(jiao)少,更(geng)是缺(que)乏對(dui)抗(kang)微(wei)動(dong)磨(mo)損(sun)的(de)(de)研(yan)究(jiu)。

6、總結及展望

鋯合(he)(he)金(jin)作為反應堆包殼(ke)材料(liao)已經廣泛(fan)應用(yong)(yong)于(yu)核工業領(ling)域(yu),但(dan)近年來核泄漏(lou)事故的(de)(de)頻繁發生促使科(ke)研工作者(zhe)對(dui)高安全性(xing)的(de)(de)核用(yong)(yong)鋯合(he)(he)金(jin)進(jin)(jin)行探索與研究。此外(wai),因鋯合(he)(he)金(jin)在(zai)航空航天、化工和(he)生物醫學等(deng)領(ling)域(yu)的(de)(de)潛在(zai)應用(yong)(yong)價值,而對(dui)其性(xing)能要求(qiu)愈發苛刻(ke),這對(dui)其表面改性(xing)提(ti)出了更大(da)挑戰。在(zai)廣大(da)科(ke)研人員的(de)(de)努力下,鋯合(he)(he)金(jin)的(de)(de)表面改性(xing)技(ji)術已經取得了令(ling)人矚目(mu)的(de)(de)成就,但(dan)仍然(ran)存在(zai)一些(xie)理論和(he)技(ji)術上(shang)的(de)(de)難點需要進(jin)(jin)一步認識和(he)攻(gong)克。

理(li)(li)論上,如(ru)激(ji)光(guang)表(biao)面(mian)處(chu)理(li)(li)過程(cheng)勢(shi)必會引入(ru)(ru)溫(wen)度梯度、殘余應(ying)力及非(fei)平衡結構,溫(wen)度梯度對表(biao)面(mian)改(gai)性層自(zi)身(shen)熱量的傳(chuan)輸(shu)以及改(gai)性層與(yu)基體區之間(jian)熱交換的影響規(gui)律需要(yao)進(jin)行深入(ru)(ru)探討(tao);技術(shu)上,物(wu)理(li)(li)氣(qi)相沉(chen)積和化學鍍(du)如(ru)何(he)提升鍍(du)層與(yu)基體的結合(he)力,激(ji)光(guang)表(biao)面(mian)處(chu)理(li)(li)中如(ru)何(he)實(shi)現激(ji)光(guang)誘導殘余應(ying)力與(yu)表(biao)面(mian)改(gai)性層和基體組織(zhi)的協同優化,冷噴涂過程(cheng)中如(ru)何(he)解決(jue)涂層厚度的精準調控等,這些(xie)均(jun)是(shi)今后需要(yao)解決(jue)和克服的技術(shu)難題(ti)。

以上問題需要(yao)通過表(biao)面(mian)改(gai)性研究工作者(zhe)的(de)不懈努力(li)(li)去(qu)不斷(duan)解決,以充(chong)實和豐富鋯合金表(biao)面(mian)改(gai)性的(de)基礎理論和技術(shu)應(ying)用(yong)。相(xiang)信隨著表(biao)面(mian)改(gai)性技術(shu)水平的(de)不斷(duan)提高,具有卓越力(li)(li)學、耐蝕、耐磨及抗氧化(hua)等(deng)表(biao)面(mian)性能的(de)鋯合金在航空(kong)航天、核工業(ye)、化(hua)工機械及生(sheng)物(wu)等(deng)領域將得(de)到更廣范的(de)應(ying)用(yong)。

參考文獻:

[1]ZhangX,Zhangb,liusg,etal.MiCrostructureandMechaNicalProPertiesofnovelZr-al-valloysProcessedbyhotrolling[J].interMetallics,2020,116:106639.

[2]FengZ,dongh,KangJ,etal.studyonthecorrelationbetWeenMiCrostructuresandcorrosionProPertiesofnovelZrtialvalloys[J].Materialsscienceandengineeringc,2019,101:92-102.

[3]馮(feng)志(zhi)浩,夏(xia)超群(qun),張新宇,等.高強韌鋯合金的發展與應用[J].材料(liao)科學與工藝,2018,26(2):1-8.

FengZhihao,XiachaoQun,ZhangXinyu,etal.develoPMentandaPPlicationsofZircoNiuMalloysWithhighstrengthandtoughness[J].Materialsscienceandtechnology,2018,26(2):1-8.

[4]王月(yue)圓,柴林江,吳璐,等.鋯(gao)合金激光表(biao)面改性研(yan)究現狀及展望[J].重慶理(li)工(gong)大學學報(自然科(ke)學),2020,34(9):159-166.

Wangyueyuan,chailinJiang,Wulu,etal.researchstatusandProsPectoflasersurfaceModificationofZralloys[J].JournalofchongQinguNiversityoftechnology(naturalscience),2020,34(9):159-166.

[5]attiaMh.onthefrettingWearMechaNisMofZr-alloys[J].tribologyinternational,2006,39(10):1320-1326.

[6]曾波,范洪遠,常鴻,等(deng).鋯合(he)金(jin)包殼表(biao)面(mian)涂層的制備進展[J].表(biao)面(mian)技術,2019,48(11):106-113.

Zengbo,Fanhongyuan,changhong,etal.ProgressinPreParationofZircoNiuMalloycladdingsurfacecoatings[J].surfacetechnology,2019,48(11):106-113.

[7]馬(ma)勇(yong).Zno薄膜制備(bei)及(ji)性質研究[d].重慶:重慶大學,2004.

Mayong.studyonfilMPreParationandProPertiesofZno[d].chongQing:chongQinguNiversity,2004.

[8]Zhangl,Pengh,QinQ,etal.effects of annealing on hardness and corrosion resistance of 60Niti filM dePosited by Magnetrons Puttering[J].Journal of alloy sandcoMPounds,2018,746:45-53.

[9]云璐,郝新.退火溫(wen)度對磁(ci)控濺射tin/ticn薄(bo)膜殘余(yu)應力、結構(gou)及耐蝕(shi)性(xing)能(neng)的影(ying)響[J].金(jin)屬熱(re)處理,2021,46(5):166-170.

yunlu,haoXin.effectofannealingteMPeratureonresidualstress,structureandcorrosionresistanceofMagnetronsPutteringtin/ticnfilM[J].heattreatMentofMetals,2021,46(5):166-170.

[10]遲迅(xun),宋長虹,鮑君峰,等.磁控濺(jian)射制備(bei)鈦基薄膜研究進(jin)展(zhan)[J].熱噴涂技術(shu),2020,12(2):17-21.

chiXun,songchanghong,baoJunfeng,etal.researchProgressoftitaNiuM-basedthinfilMSPreParedbyMagnetronsPuttering[J].therMalsPraytechnology,2020,12(2):17-21.

[11]林寧,李偉青,康嘉(jia)杰,等.高(gao)導熱涂層(ceng)制備及其性(xing)能研(yan)究(jiu)進(jin)展[J].表(biao)面技術(shu),2021,50(6):128-137.

linNing,liWeiQing,KangJiaJie,etal.researchProgressofPreParationandPerforManceofhightherMalconductivitycoatings[J].surfacetechnology,2021,50(6):128-137.

[12]sidelevdv,Kashkaroveb,syrtanovMs,etal.Nickel-chroMiuM(Ni-Cr)coatingsdePositedbyMagnetronsPutteringforaccidenttolerantnuclearfuelcladdings[J].surfaceandcoatingstechnology,2019,369:69-78.

[13]yeoMh,Maierb,MariaNir,etal.Magnetrons PutterdePosition of ZircoNiuM-silicidecoating for Mitigating high temperature oXidation of ZircoNiuM-alloy[J].surface and coatings Technology,2017,316:30-38.

[14]王曉婧,劉(liu)艷紅(hong),馮碩,等.鋯合(he)(he)金表面磁(ci)控濺射制備sic/Cr復(fu)合(he)(he)涂層的研(yan)究[J].真空科學與(yu)技(ji)術學報,2018,38(4):332-338.

WangXiaoJing,liuyanhong,Fengshuo,etal.synthesisandProPertycharacteriZationofMagnetronsPutteredsic/CrcoatingsonZr-basedalloy[J].chineseJournalofvacuuMscienceandtechnology,2018,38(4):332-338.

[15]趙彥輝,史文博,劉忠海,等.沉積工藝參數(shu)對(dui)電弧離子鍍薄膜沉積速率影響的(de)研究進展[J].真空與低溫,2020,26(5):385-391.

Zhaoyanhui,shiWenbo,liuZhonghai,etal.ProgressoneffectsofdePositionProcessingParaMetersoncoatingsdePositionrateforarcionPlating[J].vacuuMandCryogeNics,2020,26(5):385-391.

[16]ParKJh,KiMhg,ParKJ,etal.highteMPeraturesteaM-oXidationbehaviorofarcionPlatedCrcoatingsforaccidenttolerantfuelcladdings[J].surfaceandcoatingstechnology,2015,280:256-259.

[17]胡小剛,董(dong)闖,陳寶清(qing),等.電弧(hu)離子鍍制(zhi)備耐事故包(bao)殼材料厚Cr涂層及高溫抗氧化性能[J].表面技(ji)術,2019,48(2):207-219.

huXiaogang,dongchuang,chenbaoQing,etal.PreParationandhighteMPeratureoXidationresistanceofthicKCrcoatedonZr-4alloybycathodicarcdePositionforaccidenttolerantfuelcladdings[J].surfacetechnology,2019,48(2):207-219.

[18]KiMhg,KiMih,Jungyi,etal.out-of-PilePerforManceofsurface-ModifiedZrcladdingforaccidenttolerantfuelinlWrs[J].JournalofnuclearMaterials,2018,510:93-99.

[19]ZhongW,MouchePa,hanX,etal.PerforManceofiron-chroMiuM-aluMinuMalloysurfacecoatingsonZircaloy2underhigh-teMPeraturesteaMandnorMalbWroPeratingconditions[J].JournalofnuclearMaterials,2016,470:327-338.

[20]FengZ,KeP,huangQ,etal.thescalingbehaviorandMechaNisMofti2alcMaXPhasecoatingsinairandPureWatervaPor[J].surfaceandcoatingstechnology,2015,272:380-386.

[21]Maierbr,garcia-diaZbl,hauchb,etal.colds Prayde Position of ti2alccoatings for iMProvednuclearfuelcladding[J].Journalofnuclear Materials,2015,466:712-717.

[22]tallMandJ,yangJ,Panl,etal.reactivity of Zircaloy-4 With ti3sic2 andti2alc in the1100-1300℃teMPeraturerange[J].Journalofnuclear Materials,2015,460:122-129.

[23]Mengc,yangl,Wuy,etal.studyoftheoXidationbehaviorofCrncoatingonZralloyinair[J].JournalofnuclearMaterials,2019,515:354-369.

[24]吳亞(ya)文,賀秀杰,張繼龍(long),等(deng).鋯合(he)金(jin)表(biao)面(mian)Cral基耐(nai)高溫涂層(ceng)及氧化(hua)行為研究(jiu)[J].表(biao)面(mian)技術,2018,47(9):34-41.

WuyaWen,heXiuJie,ZhangJilong,etal.Cral-basedhigh-teMPeraturecoatingsonZircoNiuMalloyandoXidationbehavior[J].surfacetechnology,2018,47(9):34-41.

[25]MaXF,WuyW,tanJ,etal.evaluationofcorrosionandoXidationbehaviorsoftialCrncoatingsfornuclearfuelcladding[J].surfaceandcoatingstechnology,2019,358:521-530.

[26]楊(yang)振,樊湘芳,邱長(chang)軍,等.鋯合金表面涂層耐高溫高壓(ya)動水腐蝕性能的(de)研究[J].表面技(ji)術,2019,48(9):204-210.

yangZhen,FanXiangfang,QiuchangJun,etal.highteMPeratureandhighPressurehydrodynaMiccorrosionofZircoNiuMalloysurfacecoating[J].surfacetechnology,2019,48(9):204-210.

[27]嚴(yan)艷芹(qin),邱長軍,黃(huang)鶴,等(deng).熱處理溫度對Cr/al涂層組織結構及性能的影響[J].表面技術,2017,46(12):78-83.

yanyanQin,QiuchangJun,huanghe,etal.effectsofheattreatMentteMPeratureonMiCrostructureandProPertiesofCr/alcoatings[J].surfacetechnology,2017,46(12):78-83.

[28]董世運,王(wang)茂才(cai).輕合金表面改性技術現(xian)狀[J].航空工(gong)程與維修(xiu),1999(4):43-45.

dongshiyun,WangMaocai.Presentstatus of lasersur faceModi ficationProcesses for lightMetalalloys[J].aviationengineering and Maintenance,1999(4):43-45.

[29]高光(guang)啟,王勇,占煥校,等.寬帶激光(guang)熔(rong)凝(ning)過程溫度(du)場及殘余應(ying)力數值分析[J].中國表(biao)面(mian)工(gong)程,2008(2):15-19,25.

gaoguangQi,Wangyong,ZhanhuanXiao,etal.nuMericalanalysisoftransientteMPeraturefieldandstressdistributioninlaserWide-bandMeltingProcess[J].chinasurfaceengineering,2008(2):15-19,25.

[30]陳星(xing),葛亞瓊.Zr65al7.5Ni10cu17.5非(fei)晶合金激光熔凝的熱效應模擬[J].激光技術,2020,44(2):202-205.

chenXing,geyaQiong.siMulationoftherMaleffectofZr65al7.5Ni10cu17.5aMorPhousalloybylaserMelting[J].lasertechnology,2020,44(2):202-205.

[31]yaoy,liX,Wangyy,etal.MiCrostructuralevolutionandMechaNicalProPertiesofti-ZrbetatitaNiuMalloyafterlasersurfacereMelting[J].JournalofalloysandcoMPounds,2014,583:43-47.

[32]JiPF,lib,liusg,etal.effectoflasersurfacere-MeltingontheMiCrostructureandProPertiesofZralloy[J].Materialsletters,2020,264:127352.

[33]chail,Wuh,Wangs,etal.characteriZationofMiCrostructureandhardnessofaZr-2.5nballoysurface-treatedbyPulsedlaser[J].MaterialscheMistryandPhysics,2017,198:303-309.

[34]chail,chenK,Zhiy,etal.nanotWinsinduced by PulsedlaserandtheirhardeNingeffectinaZralloy[J].JournalofalloysandcoMPounds,2018,748:163-170.

[35]chail,chenb,Wangs,etal.MiCrostructuralchangesofZr702inducedbyPulsedlasersurfacetreatMent[J].aPPliedsurfacescience,2016,364:61-68.

[36]chailJ,Wangsy,Wuh,etal.biModal Plate structuresinduced by Pulsed laser in duPleX-PhaseZralloy[J].science china technological sciences,2017,60(4):587-592.

[37]楊(yang)膠溪,賈無名(ming),王欣,等.激(ji)光熔凝(ning)處(chu)理對Zr-1nb核燃料包殼組織和性(xing)能(neng)的影(ying)響[J].材(cai)料工(gong)程,2018,46(8):120-126.

yangJiaoXi,JiaWuMing,WangXin,etal.effectoflaserMeltingtreatMentonMiCrostructureandProPertiesofZr-1nbnuclearfuelcladding[J].JournalofMaterialsengineering,2018,46(8):120-126.

[38]KiMhg,KiMih,Jungyi,etal.MiCrostructure and MechaNical strength of surface ODS treatedZircaloy-4 sheet using laserbea MscanNing[J].nuclearengineering and Technology,2014,46(4):521-528.

[39]Jungyi,KiMhg,guiMhu,etal.surfacetreatMenttoforMadisPersedy2o3layeronZircaloy-4tubes[J].aPPliedsurfacescience,2018,429:272-277.

[40]馬建光(guang),朱(zhu)衛華,朱(zhu)紅梅,等.Zr-4合金(jin)表(biao)面(mian)激光(guang)熔(rong)覆不同類型tin粉末的組織與性能[J].金(jin)屬熱處理,2017,42(1):115-119.

MaJianguang,ZhuWeihua,ZhuhongMei,etal.MiCrostructureandProPertiesoflasercladdingWithdifferenttinPoWderonZr-4alloysurface[J].heattreatMentofMetals,2017,42(1):115-119.

[41]dobbelsteinh,gurevichel,georgeeP,etal.laserMetaldePositionofarefractorytiZrnbhftahigh-entroPyalloy[J].additiveManufacturing,2018,24:386-390.

[42]趙子碩(shuo),武美(mei)萍,繆小進,等.激光功(gong)率對FecoNiCrMo高熵合金/氧化石(shi)墨烯復合涂層(ceng)組織及耐腐蝕(shi)性能的(de)影(ying)響(xiang)[J].金屬(shu)熱處理,2022,47(4):251-257.

ZhaoZishuo,WuMeiPing,MiaoXiaoJin,etal.effectoflaserPoWeronMiCrostructureandcorrosionresistanceofFecoNiCrMohigh-entroPyally/graPheneoXidecoMPositecoating[J].heattreatMentofMetals,2022,47(4):251-257.

[43]guanh,chail,Wangy,etal.MiCrostructureandhardnessofnbtiZrandnbtatiZrrefractoryMediuM-entroPyalloycoatingsonZralloybylasercladding[J].aPPliedsurfacescience,2021,549:149338.

[44]林基輝(hui)(hui),溫亞輝(hui)(hui),范文博,等(deng).鈦合金表面激光改性技術研(yan)究進展(zhan)[J].金屬熱處(chu)理(li),2022,47(3):215-221.

linJihui,Wenyahui,FanWenbo,etal.researchProgressoflaserModificationtechnologyfortitaNiuMalloysurface[J].heattreatMentofMetals,2022,47(3):215-221.

[45]lees,ParKc,liMy,etal.influencesoflasersurfacealloyingWithNiobiuM(nb)onthecorrosionresistanceofZircaloy-4[J].JournalofnuclearMaterials,2003,321(2/3):177-183.

[46]張(zhang)立杰,范(fan)洪(hong)遠(yuan),吳華,等(deng).Zr-4合金表面鈮合金化(hua)處理(li)的組(zu)織與性能[J].金屬熱處理(li),2007,32(3):72-74.

ZhangliJie,Fan hongyuan,Wuhua,etal.MiCrostructuresandProPertiesofZr-4alloytreated by surface NiobiuMalloying[J].heattreat Ment of Metals,2007,32(3):72-74.

[47]chenK,Zengl,liZ,etal.effectsoflasersurfacealloyingWithCronMiCrostructureandhardnessofcoMMercialPurityZr[J].JournalofalloysandcoMPounds,2019,784:1106-1112.

[48]陳可.激光表面(mian)Cr合金化對(dui)純Zr微觀組(zu)織及性能的影響研究[d].重慶:重慶理工大學,2020.

chenKe.effectoflasersurfacealloyingWithCronMiCrostructureandProPertiesofcoMMercialPurityZr[d].chongQing:chongQinguNiversityoftechnology,2020.

[49]yangJ,WangX,WenQ,etal.theeffectofMiCroarco XidationandeXci Merlaser Processingon the MiCrostructureandcorrosionresistanceofZr-1nballoy[J].JournalofnuclearMaterials,2015,467:186-193.

[50]馮志浩,逯昊(hao)燃,孫信陽,等.一種提高(gao)鋯基合(he)金表面硬(ying)度的方(fang)法(fa),中國:cn110527935b[P].2021-03-16.

[51]FengZh,sunXy,hanPb,etal.MiCrostructure and MiCrohardness of anoveltiZralvalloy by laser gasNitridingatdifferentlaserPoWers[J].rareMetals,2020,39(3):270-278.

[52]ZhaoX,liuh,lis,etal.coMbinedeffectoftincoatingandsurfaceteXtureoncorrosion-WearbehaviorofselectivelaserMeltedcP-titaNiuMinsiMulatedbodyfluid[J].JournalofalloysandcoMPounds,2020,816:152667.

[53]孫洪(hong)吉(ji),韋靖,鄭兆宏,等.激光(guang)工藝參數(shu)對(dui)激光(guang)熔(rong)化沉(chen)積(ji)純鈦樣品殘(can)余應力的影響[J].中(zhong)國激光(guang),2019,46(3):123-129.

sunhongJi,WeiJing,ZhengZhaohong,etal.effectsoflaser Process ParaMeters on residualstress of PuretitaNiuMsaMPlesPreParedbylaserMeltingdePosition[J].chineseJournaloflasers,2019,46(3):123-129.

[54]XuanFZ,caolQ,WangZ,etal.MasstransPortinlasersurfaceNitridinginvolvingtheeffectofhighteMPeraturegradient:siMulationandeXPeriMent[J].coMPutationalMaterialsscience,2010,49(1):104-111.

[55]taoyF,liJ,lvyh,etal.effect of heat treatMent on residualstress and Wearbehaviors of the tiNi/ti2N ibasedlasercladdingcoMPositecoatings[J].oPtics and laser technology,2017,97:379-389.

[56]徐榮清,趙建(jian)玲(ling),王西新,等(deng).陽極氧化法(fa)制備氧化鋯納米(mi)管陣列(lie)的研究[J].材(cai)料工藝,2009,38(6):1084-1086.

XurongQing,ZhaoJianling,WangXiXin,etal.FabricationofZircoNiananotubearraysbyanodiZation[J].Materialtechnology,2009,38(6):1084-1086.

[57]李玲(ling),姚生蓮,趙曉麗,等(deng).陽極氧化法制備Zr-17nb合金表面(mian)氧化物納米管陣列及其性能研究[J].金屬學(xue)報,2019,55(8):1008-1018.

liling,yaoshenglian,ZhaoXiaoli,etal.FabricationandProPertiesofanodicoXidenanotubulararraysonZr-17nballoy[J].actaMetallurgicasiNica,2019,55(8):1008-1018.

[58]soWaM,?astóWkad,Kukharenkoai,etal.characterisationofanodicoXidefilMSonZircoNiuMforMedinsulPhuricacid:XPsandcorrosionresistanceinvestigations[J].JournalofsolidstateelectrocheMistry,2017,21(1):203-210.

[59]薛(xue)文(wen)斌,金乾(qian),朱慶振,等.鋯合金表面微弧(hu)氧化陶瓷膜(mo)制備及(ji)特性分析[J].材料熱處(chu)理(li)學報,2010,31(2):119-122.

XueWenbin,JinQian,ZhuQingZhen,etal.PreParationandProPertiesofceraMiccoatingforMedbyMiCroarcoXidationonZircoNiuMalloy[J].transactionsofMaterialsandheattreatMent,2010,31(2):119-122.

[60]ZouZ,XueW,JiaX,etal.effectofvoltageonProPertiesofMiCroarcoXidationfilMSPreParedinPhosPhateelectrolyteonZr-1nballoy[J].surfaceandcoatingstechnology,2013,222:62-67.

[61]徐(xu)勃.鋯鈦合金(jin)微弧氧化與激光(guang)表(biao)面改性研究[d].哈爾濱(bin):哈爾濱(bin)工(gong)業大(da)學,2015.

Xubo.studyonMiCroarcoXidationandlasersurfaceModificationofZi-tialloy[d].harbin:harbininstituteoftechnology,2015.

[62]萬(wan)千(qian).鋯-4合金管內壓力無損檢測及(ji)離子注入對其耐蝕(shi)性(xing)能(neng)影響研究[d].北京:清華大學,2006.

WanQian.ndtMethodsofthePressureintheZircaloy-4tubeandeffectofioniMPlantationonitscorrosionbehavior[d].beiJing:tsinghuauNiversity,2006.

[63]彭德全,白新德,陳小文,等.鉬離子(zi)注入對鋯-4合金耐腐蝕(shi)性的影響(xiang)[J].核技術,2004,27(9):671-675.

PengdeQuan,baiXinde,chenXiaoWen,etal.effectofMolybdenuMioniMPlantationoncorrosionresistanceofZircaloy-4[J].nucleartechNiQue,2004,27(9):671-675.

[64]彭德全(quan),白新德,周慶鋼,等.鑭離子注(zhu)入對純(chun)鋯耐蝕性的(de)影響[J].核技(ji)術,2004,27(1):35-37.

PengdeQuan,baiXinde,ZhouQinggang,etal.effect of lanthanuMioniMPlantationonthebehaviorofZircoNiuM[J].nucleartechNiQue,2004,27(1):35-37.

[65]PengdQ,baiXd,chenX,etal.corrosionbehaviorofyttriuMandceriuM-iMPlantedZircoNiuM[J].rareMetalMaterialsandengineering,2004,33(9):918-923.

[66]PengdQ,baiXd,chenbs.surfaceanalysisandcorrosionbehaviorofZircoNiuMsaMPlesiMPlantedWithyttriuMandlanthanuM[J].surfaceandcoatingstechnology,2005,190(2/3):440-447.

[67]陳小文,白新德,薛祥義,等.釔離(li)子注(zhu)入鋯的動電(dian)位極化(hua)曲線研究[J].稀有(you)金屬(shu)材(cai)料與工程(cheng),2004,33(2):153-156.

chenXiaoWen,baiXinde,XueXiangyi,etal.studyonPotentiodyna MicPolariZationcurves of yttriuM-iMPlantedZircoNiuM[J].rareMetalMaterialsandengineering,2004,33(2):153-156.

[68]sharMaP,dhaWana,sharMasK.influence of Nitrogen ion iMPlantation on corrosion behavior of Zr55cu30Ni5al10 aMorPhousalloy[J].Journalofnon-Crystallinesolids,2019,511:186-193.

[69]張聰惠,劉大利,蘭新哲,等(deng).鋯合金氧化膜對腐蝕性能(neng)影響研究現狀[J].熱(re)加工工藝,2011,40(16):117-120.

Zhangconghui,liudali,lanXinZhe,etal.studyProgressabouteffectofoXidefilMoncorrosionresistanceofZircaloy[J].hotWorkingtechnology,2011,40(16):117-120.

[70]張(zhang)小(xiao)帆(fan),李(li)魯生,馬旭,等.燃料元件Zr-4端塞與鉭(tan)管的(de)焊接技術研究及其(qi)應用[J].核動力工(gong)程,1998,19(2):79-82.

ZhangXiaofan,lilusheng,MaXu,etal.WeldingtechNiQueresearchbetWeenfueleleMentZr-4endandtantaluMtubeanditsaPPlication[J].nuclearPoWerengineering,1998,19(2):79-82.

[71]趙文金(jin),苗志(zhi),蔣宏(hong)曼,等.表(biao)面處(chu)理對(dui)Zr-4合金(jin)抗癤狀(zhuang)腐蝕(shi)性能(neng)的影響[J].稀(xi)有金(jin)屬,1999,23(6):458-460.

ZhaoWenJin,MiaoZhi,JianghongMan,etal.effectofsurfacetreatMentonnodularcorrosionofZr-4alloy[J].chineseJournalofrareMetals,1999,23(6):458-460.

[72]馬(ma)靜,李強,毛(mao)磊,等(deng).Zr-8al合金酸(suan)性(xing)化學鍍(du)Ni-P鍍(du)層[J].材料熱(re)處理學報,2013,34(1):144-147.

MaJing,liQiang,Maolei,etal.Ni-PcoatingbyacidicelectrolessPlatingonZr-8alalloy[J].transactionsofMaterialsandheattreatMent,2013,34(1):144-147.

[73]國(guo)棟,肖福(fu)仁,李強,等.Zr-al二(er)元合(he)金的表面預處理及化學鍍Ni-P工藝[J].中國(guo)有色金屬(shu)學報,2013,23(6):1656-1660.

guodong,XiaoFuren,liQiang,etal.cheMical conversion treatMent and electroless Plating Ni-Ponas-castZr-alalloy[J].thechineseJournal of nonferrousMetals,2013,23(6):1656-1660.

[74]terraNiKa,ParishcM,shind,etal.ProtectionofZircoNiuMbyaluMina-andchroMia-forMingiron alloy sunder high-teMPeraturesteaMeXPosure[J].Journal of nuclearMaterials,2013,438(1-3):64-71.

[75]宋凱強,叢大龍(long),何慶兵,等.先(xian)進冷噴(pen)涂技(ji)術的應(ying)用及展望[J].裝備環境(jing)工(gong)程,2019,16(8):65-69.

songKaiQiang,congdalong,heQingbing,etal.aPPlicationandProsPect of advancedcoldsPraytechnology[J].eQuiPMentenvironMentalengineering,2019,16(8):65-69.

[76]?evecˇeKM,gurgena,seshadria,etal.develoPMentofCrcoldsPray-coatedfuelcladdingWithenhancedaccidenttolerance[J].nuclearengineeringandtechnology,2018,50(2):229-236.

[77]胡英(ying)俊,黃小波,高玉魁.噴丸處理對鋯(gao)合金(jin)微動磨損及抗腐蝕性(xing)能的影(ying)響[J].表(biao)面技術,2020,49(7):238-244,254.

huyingJun,huangXiaobo,gaoyukui.effectofshotPeeNingonfrettingWearandcorrosionresistanceofZircoNiuMalloy[J].surfacetechnology,2020,49(7):238-244,254.

在線客服
客服電話

全國免費服務熱線
0917 - 3388692
掃一掃

jenota.com.cn
利泰金屬手機網

返(fan)回頂部

↑