亚洲中文字幕一区精品自拍_国产精品VA在线观看无码_翁吻乳婷婷小玲21章_久久久久久久精品国产亚洲87

航天用鎳基高溫合金及其激光增材制造研究現狀

發布時間: 2023-11-03 23:50:32    瀏覽次數:

航天(tian)(tian)用材料及其制(zhi)備技術的發展(zhan)是新型航天(tian)(tian)器(qi)實現多功能性(xing)(xing)(xing)、高(gao)性(xing)(xing)(xing)能、高(gao)可靠(kao)性(xing)(xing)(xing)和成本效益的基礎和保證(zheng)[1-4]。鎳基高(gao)溫合金(jin)具有優(you)異的室(shi)溫/高(gao)溫力(li)學性(xing)(xing)(xing)能、高(gao)溫抗氧化性(xing)(xing)(xing)能與耐蝕性(xing)(xing)(xing)能,因而(er)在航天(tian)(tian)領域得到重(zhong)要應用,如航天(tian)(tian)器(qi)發動機熱端部件(jian)[5]和航天(tian)(tian)器(qi)防熱系統(tong)[6]。

相較于(yu)航(hang)空領域,航(hang)天領域對(dui)于(yu)高(gao)(gao)溫合(he)金部(bu)件的制造要求更加苛刻,呈現出(chu)更加復雜化(hua)、薄壁化(hua)、復合(he)化(hua)、一體(ti)化(hua)等(deng)趨(qu)勢。以高(gao)(gao)性能液體(ti)火箭發動機燃燒室為例[7],其部(bu)件往往暴露(lu)在高(gao)(gao)熱、負荷等(deng)工作環境中,因(yin)此需要進行高(gao)(gao)效率的冷卻(que)。傳統的減材或等(deng)材加工技術無(wu)法勝任此類獨特且(qie)巧(qiao)妙的冷卻(que)系統的制備。

20 世紀 80 年代后期發展(zhan)起(qi)來的(de)增材制(zhi)造(AdditiveManufacturing,AM)技術(shu)(shu)[8]作(zuo)為一(yi)(yi)種先進的(de)一(yi)(yi)體化制(zhi)造技術(shu)(shu),正逐漸成(cheng)為鎳基(ji)高溫合金復雜構件制(zhi)備的(de)顛(dian)覆性技術(shu)(shu)[9]。與傳(chuan)統制(zhi)造方法相(xiang)比,AM 成(cheng)形(xing)技術(shu)(shu)在縮(suo)減零件數、縮(suo)短生產周期、降(jiang)低(di)成(cheng)本(ben)、實現(xian)復雜結構自由設(she)計,從(cong)而實現(xian)輕量(liang)化、多組件整合和性能提高方面(mian)展(zhan)現(xian)出巨大優(you)勢(shi)[4,7,10-15]。

文中以航天(tian)領域(yu)最常用(yong)的 IN 718 和 IN 625 合(he)(he)金為例,詳細論述了鎳基(ji)高溫合(he)(he)金增材制造工藝(yi)優化方法(fa)、微觀(guan)組織特(te)征、增材制造后(hou)熱處理(li)工藝(yi)的研究(jiu)現狀,同時展示(shi)了幾個增材制造鎳基(ji)高溫合(he)(he)金航天(tian)構件案(an)例,以期為增材制造鎳基(ji)高溫合(he)(he)金在航天(tian)領域(yu)的進一步應用(yong)提供參考。

1、 航天領域常用鎳基高溫合金

鎳(nie)(nie)基高(gao)溫合(he)金(jin)(jin)是以鎳(nie)(nie)為基體(含量一般大于(yu) 50%)的高(gao)溫合(he)金(jin)(jin),在 650~1 000 ℃范圍內具有較高(gao)強度、良好抗(kang)氧化(hua)和抗(kang)燃氣(qi)腐蝕能(neng)力等綜合(he)性能(neng)[16]。鎳(nie)(nie)基高(gao)溫合(he)金(jin)(jin)牌號眾多,目前(qian)已(yi)有大量的綜述文(wen)獻[17-25]對其發展歷(li)程(cheng)、成分、微觀組織、力學性能(neng)、服役性能(neng)及(ji)制備技術進(jin)行了(le)詳細總結(jie)。原則(ze)上,航(hang)空用鎳(nie)(nie)基高(gao)溫合(he)金(jin)(jin)都可以用于(yu)航(hang)天領域,但就現有文(wen)獻資料可知,航(hang)天領域用鎳(nie)(nie)基高(gao)溫合(he)金(jin)(jin)[13,26-29]主要包(bao)括 IN 718、IN625、Rene′41、MAR?M 246、Incoloy 903、IN X?750、Astroloy、Alloy 713C、Rene′95、Hastelloy 系列、IN617、GH4202、GH4642 和 GH4587 等。

在(zai)航天(tian)器(qi)發動(dong)機(ji)領域(yu)[1],選(xuan)用(yong)(yong)(yong)高溫(wen)(wen)合(he)(he)金(jin)的(de)主要依據是部(bu)件(jian)服(fu)役時的(de)受(shou)力情況。工作葉(xie)片、輪(lun)盤、渦(wo)輪(lun)轉子(zi)和(he)緊固件(jian)等受(shou)力復雜部(bu)件(jian)對材料力學性能(neng)(neng)要求極為嚴(yan)格,通常選(xuan)用(yong)(yong)(yong)性能(neng)(neng)更(geng)好的(de)沉淀硬化型鎳基高溫(wen)(wen)合(he)(he)金(jin),如用(yong)(yong)(yong)作輪(lun)盤材料的(de) IN 718、Rene′41、Astroloy合(he)(he)金(jin)和(he)用(yong)(yong)(yong)于制(zhi)備定向結(jie)(jie)晶(jing)鑄造葉(xie)片的(de) Alloy713C、Mar?M246 合(he)(he)金(jin)[5]。對只受(shou)高溫(wen)(wen)靜負載或不大的(de)熱應(ying)力和(he)振動(dong)應(ying)力作用(yong)(yong)(yong)的(de)部(bu)件(jian),則更(geng)多地(di)考慮抗高溫(wen)(wen)氧化性能(neng)(neng),如 IN 625 合(he)(he)金(jin)被(bei)用(yong)(yong)(yong)于制(zhi)造“超 X”計劃中超音速巡航飛行器(qi)以及飛機(ji)狀航天(tian)器(qi)的(de)發動(dong)機(ji)出氣(qi)口(kou)和(he)進氣(qi)口(kou)控制(zhi)板(ban)[1]。在(zai)航天(tian)器(qi)防(fang)熱系(xi)統方面[6,30-31],鎳基高溫(wen)(wen)合(he)(he)金(jin)通常用(yong)(yong)(yong)于制(zhi)備金(jin)屬(shu)熱防(fang)護(hu)結(jie)(jie)構的(de)蜂窩夾芯結(jie)(jie)構或蒙皮。

圖 1 所示(shi)為第 3 代金(jin)屬防(fang)熱系統方案示(shi)意圖[30],其稀(xi)疏(shu)蜂窩(wo)芯層和(he)側壁薄板選用 IN 617 鎳基高(gao)(gao)溫合(he)(he)金(jin)。該合(he)(he)金(jin)為固溶強(qiang)化(hua)型高(gao)(gao)溫合(he)(he)金(jin),具有優良的高(gao)(gao)溫抗氧化(hua)性和(he)高(gao)(gao)溫強(qiang)度,可(ke)承受 982~1 038 ℃的高(gao)(gao)溫,極(ji)限瞬時(shi)耐(nai)熱可(ke)達約 1 093 ℃,適用于>650 ℃的較高(gao)(gao)溫區[6]。

隨著增材(cai)制(zhi)造(zao)技(ji)術理論研究的不斷發展,激光增材(cai)制(zhi)造(zao)的一體(ti)化(hua)構(gou)件(jian)在航(hang)天領(ling)域(yu)受到(dao)越來(lai)越多的關注(zhu)[4,32-44]。IN 718 和 IN 625 合金是航(hang)天領(ling)域(yu)最常用的兩(liang)類(lei)合金,也是被報道和研究得最多的兩(liang)類(lei)鎳基高溫合金,二(er)(er)者總計占比達到(dao)約 83%[45]。二(er)(er)者的名義化(hua)學成(cheng)分如表 1 所(suo)示(shi)。

t1-b1.jpg

盡管 IN 718 和(he) IN 625 合(he)金(jin)(jin)的化(hua)(hua)(hua)學成(cheng)分接近,但其強(qiang)(qiang)(qiang)化(hua)(hua)(hua)機理(li)不同:IN 718 是(shi)一種(zhong)以(yi)(yi) γ''相(xiang)作(zuo)為(wei)主要強(qiang)(qiang)(qiang)化(hua)(hua)(hua)相(xiang),γ'相(xiang)作(zuo)為(wei)輔助強(qiang)(qiang)(qiang)化(hua)(hua)(hua)相(xiang),晶間 δ 相(xiang)作(zuo)為(wei)晶界強(qiang)(qiang)(qiang)化(hua)(hua)(hua)相(xiang)的 沉 淀 硬(ying) 化(hua)(hua)(hua) 型(xing) 合(he) 金(jin)(jin) ; IN 625 是(shi) 一 種(zhong) 以(yi)(yi) 難 熔 金(jin)(jin) 屬Nb/Mo 固(gu)溶強(qiang)(qiang)(qiang)化(hua)(hua)(hua)為(wei)主,輔以(yi)(yi)各種(zhong)碳化(hua)(hua)(hua)物(MC、M6C、M23C6)強(qiang)(qiang)(qiang)化(hua)(hua)(hua)的 Ni?Cr 基固(gu)溶強(qiang)(qiang)(qiang)化(hua)(hua)(hua)型(xing)合(he)金(jin)(jin)。下文以(yi)(yi) IN718 和(he) IN 625 合(he)金(jin)(jin)為(wei)例,詳(xiang)細綜(zong)述鎳基高溫合(he)金(jin)(jin)增(zeng)材制(zhi)造(zao)工藝優化(hua)(hua)(hua)、組織特點及增(zeng)材制(zhi)造(zao)后熱處理(li)的研究現狀。

2、 航天領域用鎳基高溫合金材料的增材制造技術研究

2.1 工(gong)藝優化方法

IN 718 和(he)(he) IN 625 合(he)(he)金(jin)具有相似(si)的(de)(de)(de)密(mi)度和(he)(he)熔化(hua)區間[48],且(Al+Ti)的(de)(de)(de)質(zhi)量(liang)分(fen)數均遠低于 4%,屬于易焊(han)合(he)(he)金(jin)[49]。但(dan)兩者(zhe)對增材(cai)制(zhi)造(zao)工(gong)(gong)(gong)藝(yi)(yi)參(can)數的(de)(de)(de)敏感性存在較大差異。例(li)如(ru),Zhong 等[48]研究表(biao)明,在相同(tong)的(de)(de)(de)增材(cai)制(zhi)造(zao)工(gong)(gong)(gong)藝(yi)(yi)參(can)數條件下(xia),IN 625 合(he)(he)金(jin)的(de)(de)(de)致密(mi)度(孔隙率為 0.009%)顯著高(gao)于 IN 718 合(he)(he)金(jin)(孔隙率為0.69%),且 IN 625 合(he)(he)金(jin)的(de)(de)(de)凝(ning)固組織(zhi)更細(xi)。這(zhe)主要是由于 IN 625 合(he)(he)金(jin)熔池內部(bu)的(de)(de)(de)對流(liu)更強(qiang),提高(gao)了凝(ning)固速(su)度,促進了氣(qi)體排出。這(zhe)一(yi)結果也表(biao)明,對于特定的(de)(de)(de)鎳基高(gao)溫合(he)(he)金(jin)材(cai)料,須進行(xing)更細(xi)致的(de)(de)(de)增材(cai)制(zhi)造(zao)工(gong)(gong)(gong)藝(yi)(yi)參(can)數優化(hua)研究。增材(cai)制(zhi)造(zao)工(gong)(gong)(gong)藝(yi)(yi)的(de)(de)(de)綜(zong)合(he)(he)加工(gong)(gong)(gong)圖(tu)(tu)可以(yi)快(kuai)速(su)篩選出適合(he)(he)某種(zhong)材(cai)料的(de)(de)(de)增材(cai)制(zhi)造(zao)工(gong)(gong)(gong)藝(yi)(yi)參(can)數范圍(wei)。以(yi)激光粉末床熔融(Laser Powder Bed Fusion,LPBF)增材(cai)制(zhi)造(zao)技術[50]為例(li),在考慮(lv)控制(zhi)熔池幾何(he)尺寸特征(zheng)(圖(tu)(tu) 2a)的(de)(de)(de)基礎上,綜(zong)合(he)(he)考慮(lv)影響熔池的(de)(de)(de)能量(liang)密(mi)度,可以(yi)建立LPBF 綜(zong)合(he)(he)加工(gong)(gong)(gong)圖(tu)(tu)(圖(tu)(tu) 2b)。在加工(gong)(gong)(gong)工(gong)(gong)(gong)藝(yi)(yi)窗口(kou)內(圖(tu)(tu)2b 中(zhong) III 區)可獲(huo)得搭接(jie)良(liang)好、缺陷較少的(de)(de)(de)增材(cai)制(zhi)造(zao)鎳基高(gao)溫合(he)(he)金(jin)材(cai)料。

t2.jpg

另(ling)一(yi)方面,實(shi)(shi)驗設計方法(fa)可(ke)以用(yong)最(zui)少的實(shi)(shi)驗次數(shu)快速篩選(xuan)出關鍵工(gong)藝參(can)數(shu)項及(ji)其(qi)參(can)數(shu)范(fan)圍,并據此確(que)定(ding)最(zui)優化(hua)的工(gong)藝參(can)數(shu)組(zu)合,在增(zeng)材(cai)制(zhi)(zhi)造工(gong)藝參(can)數(shu)優化(hua)過程中也被廣泛(fan)地應用(yong)[51-54]。Moradi 等[51]使(shi)用(yong)全因子設計實(shi)(shi)驗方法(fa),系統研究了激(ji)光(guang)掃(sao)(sao)描(miao)速度(du)、送(song)粉速率(lv)和掃(sao)(sao)描(miao)策略對(dui)直接激(ji)光(guang)金屬沉(chen)積(Direct LaserMetal Deposition,DLMD)增(zeng)材(cai)制(zhi)(zhi)造 IN 718 合金的幾何尺寸(cun)、硬度(du)標(biao)準差(cha)和增(zeng)材(cai)制(zhi)(zhi)造壁穩(wen)定(ding)性的影響,基于統計分析獲得(de)了最(zui)佳的工(gong)藝條件:掃(sao)(sao)描(miao)速度(du)2.5 mm/s、送(song)粉速率(lv) 28.52 g/min、單向掃(sao)(sao)描(miao)模式。

Benoit 等[53]研究了(le)合金成分和(he)(he) LPBF 工藝(yi)參數(shu)對(dui) IN625 合金缺陷形成的影響規(gui)律(圖 3)。結果表明,LPBF?IN 625 合金的裂(lie)紋對(dui)材料的成分十分敏感:當合金粉中含有較(jiao)高含量的 Si 和(he)(he) Nb 時,無論(lun)如何優化工藝(yi)參數(shu),裂(lie)紋都無法(fa)消除(chu);在低 Si 和(he)(he) Nb 含量時,樣品中不存在裂(lie)紋,且可以通(tong)過(guo)優化工藝(yi)參數(shu)獲得低孔隙率(lv)樣品。

t3.jpg

2.2 增材制(zhi)造(zao)鎳基高溫合金的微觀(guan)組織

金屬增(zeng)材制(zhi)(zhi)造(zao)(zao)層層沉(chen)積(ji)的(de)過(guo)(guo)程實際上(shang)是(shi)許多小尺寸(cun)熔池重復累加的(de)過(guo)(guo)程,其宏(hong)微觀(guan)組織特點本質上(shang)是(shi)由金屬熔化(hua)和凝(ning)固(gu)過(guo)(guo)程中的(de)傳熱(re)和傳質過(guo)(guo)程決(jue)定的(de)。Liu 等[50]根據增(zeng)材制(zhi)(zhi)造(zao)(zao)過(guo)(guo)程中的(de)熱(re)歷史,將增(zeng)材制(zhi)(zhi)造(zao)(zao)的(de)微觀(guan)結構(gou)劃(hua)分為凝(ning)固(gu)微觀(guan)結構(gou)(包括(kuo)柱晶結構(gou)和晶間析出相)和凝(ning)固(gu)后微觀(guan)結構(gou)(由應力和熱(re)循環(huan)而引起的(de)位錯(cuo)胞(bao)和納米析出相),使增(zeng)材制(zhi)(zhi)造(zao)(zao)鎳基(ji)高溫合金的(de)微觀(guan)組織呈現(xian)出跨尺度的(de)分級結構(gou)特點[55]。

一方面,對凝固組織(zhi)而言,晶(jing)粒(li)形貌和尺(chi)寸可(ke)依據經典凝固理論(lun)進行分(fen)析[56]。通常,增(zeng)(zeng)材制(zhi)造的溫度(du)梯度(du)和凝固速(su)率都極高,使(shi)增(zeng)(zeng)材制(zhi)造鎳基高溫合金呈現出(chu)比傳統(tong)制(zhi)備工藝更細小的枝(zhi)晶(jing)/胞(bao)晶(jing)和析出(chu)相尺(chi)寸 [57] , 且 在 較 大 的 激 光 能(neng) 量(liang) 密 度(du) 范 圍 內 ( 4.1~300.0 J/mm2),胞(bao)晶(jing)/枝(zhi)晶(jing)尺(chi)寸往往隨著激光能(neng)量(liang)密度(du)的增(zeng)(zeng)加而增(zeng)(zeng)大,基本上呈線性關系(xi)[55]。

另一方(fang)面(mian),盡管增(zeng)材制造技術(shu)在(zai)(zai)解決材料成分宏觀(guan)(guan)偏析(xi)(xi)方(fang)面(mian)具有巨大的(de)(de)(de)優勢[58],但極(ji)(ji)快的(de)(de)(de)冷(leng)卻(que)速度往(wang)往(wang)引起材料內部局部產生微觀(guan)(guan)偏析(xi)(xi)[59]。由(you)于 Nb 和(he) Mo 元素(su)極(ji)(ji)易在(zai)(zai)胞界(jie)富集,在(zai)(zai)LPBF?IN 718 合(he)金(jin)(jin)中(zhong),大量(liang)的(de)(de)(de)Laves相在(zai)(zai)胞界(jie)上析(xi)(xi)出(chu)[60](圖 4a),且(qie) Laves 相的(de)(de)(de)數(shu)量(liang)、形貌和(he)尺寸(cun)與(yu)增(zeng)材制造工藝參數(shu)密(mi)切相關[61-63]。Zhang 等[59]也發現,在(zai)(zai) LBPF?IN 625 合(he)金(jin)(jin)中(zhong),Nb 和(he) Mo 元素(su)也傾向于在(zai)(zai)枝(zhi)晶間區(qu)域(yu)富集(圖 4b),在(zai)(zai)增(zeng)材制造后(hou)的(de)(de)(de)熱處理過程(cheng)中(zhong),這些局部微觀(guan)(guan)偏析(xi)(xi)導致 LBPF?IN 625 合(he)金(jin)(jin)中(zhong) δ 相的(de)(de)(de)生長速度遠遠快于鍛造合(he)金(jin)(jin)。

t4.jpg

2.3 增材制造(zao)鎳基高溫合金的后續熱處理工藝(yi)

增(zeng)材(cai)(cai)制造后(hou)續熱處(chu)理是(shi)調控(kong)增(zeng)材(cai)(cai)制造鎳基(ji)高(gao)溫(wen)合(he)金力學(xue)性(xing)能(neng)的重(zhong)(zhong)要工(gong)序,其影響如(ru)圖 5 所示[11]。通過熱處(chu)理,能(neng)夠消除材(cai)(cai)料(liao)內部(bu)熱應(ying)力和微觀偏(pian)析,以及調控(kong)微觀組織,從而使增(zeng)材(cai)(cai)制造鎳基(ji)高(gao)溫(wen)合(he)金部(bu)件(jian)更好地滿(man)足(zu)服(fu)(fu)役要求。但對于不(bu)同類型的增(zeng)材(cai)(cai)制造鎳基(ji)高(gao)溫(wen)合(he)金,后(hou)續熱處(chu)理對力學(xue)性(xing)能(neng)的影響存(cun)在(zai)巨大的差異。對沉淀強(qiang)(qiang)化(hua)型 IN 718 合(he)金而言,增(zeng)材(cai)(cai)制造過程中極高(gao)的溫(wen)度梯度和極快的冷卻速度會抑(yi)制 γ''和 γ'相的析出(chu)(chu),導(dao)致增(zeng)材(cai)(cai)制造 IN 718 合(he)金的硬度和強(qiang)(qiang)度較低[60,64]。合(he)適(shi)的熱處(chu)理能(neng)促(cu)使 γ''和 γ'相重(zhong)(zhong)新析出(chu)(chu),從而顯著(zhu)地提高(gao)了材(cai)(cai)料(liao)的屈(qu)服(fu)(fu)強(qiang)(qiang)度,但引起塑性(xing)普遍下降;對固(gu)溶強(qiang)(qiang)化(hua)型 IN 625 合(he)金而言,熱處(chu)理對室溫(wen)屈(qu)服(fu)(fu)強(qiang)(qiang)度的影響并不(bu)顯著(zhu)。

t5.jpg

2.3.1 增材制造 IN 718 合金的熱處理

基(ji)于 IN 718 合金(jin)的 TTT 圖[65],增(zeng)材(cai)制造 IN 718合金(jin)的后續熱處理制度通常(chang)包(bao)含以下 3 種規范[66-67]:析(xi)出時(shi)(shi)效(precipitation aging,DA);δ 相(xiang)時(shi)(shi)效+析(xi)出時(shi)(shi)效(δ aging + precipitation aging,SA);高(gao)溫(wen)微觀組(zu)織(zhi)均勻化+δ 相(xiang)時(shi)(shi)效+析(xi)出時(shi)(shi)效(high-temperature mi-crostructure homogenization + δ aging + precipitationaging,HSA)。具體的熱處理工(gong)藝規范如表 2 所示。

b2-t6.jpg

通常(chang)來說,較低(di)溫度(du)下的(de)(de) DA 處(chu)理不會(hui)(hui)影響增材制(zhi)(zhi)造(zao)合金的(de)(de)打(da)印(yin)(yin)態(tai)晶粒形貌,僅會(hui)(hui)促使 γ''相(xiang)和 γ'相(xiang)析(xi)(xi)出,但低(di)的(de)(de)熱(re)處(chu)理溫度(du)并不能消除打(da)印(yin)(yin)過程中由(you)于微觀偏析(xi)(xi)而析(xi)(xi)出的(de)(de) Laves 相(xiang)。Laves 相(xiang)是一種有害相(xiang),會(hui)(hui)損害材料(liao)的(de)(de)力學性(xing)能[68],通常(chang)在>970 ℃的(de)(de)高溫條件下可以(yi)將其溶(rong)解(jie)。因此,增材制(zhi)(zhi)造(zao) IN 718 合金往往采(cai)用高于 970 ℃的(de)(de)溫度(du)進行(xing)均勻化(hua)熱(re)處(chu)理。

采(cai)用較低(di)均勻化(hua)熱(re)處(chu)(chu)(chu)理溫度的(de) SA 制(zhi)度可以使Laves 相(xiang)(xiang)溶解并轉化(hua)為沿(yan)晶(jing)界(jie)析出的(de) δ 相(xiang)(xiang)。δ 相(xiang)(xiang)會(hui)隨固(gu)溶處(chu)(chu)(chu)理時間(jian)的(de)延長而長大(da)[69],過長的(de)熱(re)處(chu)(chu)(chu)理時間(jian)會(hui)引(yin)(yin)起 δ 相(xiang)(xiang)由(you)<1 μm 的(de)顆粒狀(zhuang)轉變為長約 10 μm 的(de)長條狀(zhuang)(圖 6)。引(yin)(yin)起這一現象的(de)主要(yao)原因是:晶(jing)界(jie)處(chu)(chu)(chu)的(de)Laves 相(xiang)(xiang)溶解,引(yin)(yin)起 Nb 元素(su)在晶(jing)界(jie)附(fu)近聚集(ji),導致 δ相(xiang)(xiang)在晶(jing)界(jie)或(huo)晶(jing)界(jie)附(fu)近析出;亞穩態 γ''相(xiang)(xiang)向 δ 相(xiang)(xiang)的(de)轉變(650 ℃)。

隨(sui)著(zhu)固(gu)(gu)溶溫(wen)(wen)度(HSA)的(de)(de)提(ti)(ti)高[67],增材制造樣(yang)品的(de)(de)再結晶程度也逐漸提(ti)(ti)高,使微觀組織(zhi)由(you)各(ge)向異性(xing)逐漸轉(zhuan)變為(wei)各(ge)向同性(xing)。當固(gu)(gu)溶溫(wen)(wen)度高于1180 ℃時,增材制造樣(yang)品可(ke)發生完(wan)全再結晶現象,并且隨(sui)著(zhu)均(jun)勻化(hua)溫(wen)(wen)度的(de)(de)提(ti)(ti)高和時間的(de)(de)延長(chang),Laves 相(xiang)或碳化(hua)物相(xiang)完(wan)全溶解,引(yin)起 γ''相(xiang)尺寸(cun)增大[69]。

由(you)此可見,增材(cai)制(zhi)造(zao) IN 718 合金(jin)固溶熱處理制(zhi)度的(de)(de)(de)選擇[69-70]不僅影響 γ''相和 δ 相的(de)(de)(de)析出行(xing)為(wei),也會(hui)影響材(cai)料的(de)(de)(de)再結晶程度,對(dui)調(diao)控(kong)合金(jin)的(de)(de)(de)微觀組(zu)織(zhi)極為(wei)重要。

Li 等[71]開(kai)發了(le)(le)一種(zhong)(zhong)增(zeng)材制造后(hou)新(xin)型熱處(chu)(chu)理(li)工(gong)藝(yi)(yi)路(lu)線(圖(tu) 7a),與傳統熱處(chu)(chu)理(li)工(gong)藝(yi)(yi)相比,新(xin)型熱處(chu)(chu)理(li)工(gong)藝(yi)(yi)采用更高的(de)(de)(de)固溶處(chu)(chu)理(li)溫(wen)(wen)(wen)度,但隨后(hou)僅進行一次低(di)溫(wen)(wen)(wen)時效處(chu)(chu)理(li)。這(zhe)種(zhong)(zhong)新(xin)的(de)(de)(de)熱處(chu)(chu)理(li)工(gong)藝(yi)(yi)一方(fang)面(mian)使(shi)(shi)合(he)(he)金中(zhong)出現(xian)低(di)層錯能的(de)(de)(de)退(tui)火孿晶(jing)和無(wu)局部應變的(de)(de)(de)再結晶(jing)晶(jing)粒(圖(tu) 7b),貢獻(xian)了(le)(le)極好(hao)的(de)(de)(de)塑性;另一方(fang)面(mian)使(shi)(shi)合(he)(he)金基體中(zhong)析出彌散分布的(de)(de)(de) 10~35 nm 超細(xi)近球形 γ''+γ'強化相,貢獻(xian)了(le)(le)極好(hao)的(de)(de)(de)強度(圖(tu) 7c)。這(zhe)種(zhong)(zhong)理(li)想的(de)(de)(de)微觀組織特(te)點(dian)使(shi)(shi) LPBF?IN 718 合(he)(he)金在基本不損(sun)失強度的(de)(de)(de)前提下,使(shi)(shi)其斷(duan)裂伸(shen)長率由 17%大幅(fu)提高至(zhi) 24%(圖(tu)7d)。這(zhe)一研究成果(guo)表明(ming),基于增(zeng)材制造鎳(nie)基高溫(wen)(wen)(wen)合(he)(he)金特(te)殊(shu)的(de)(de)(de)微觀組織特(te)點(dian),通過開(kai)發新(xin)的(de)(de)(de)熱處(chu)(chu)理(li)工(gong)藝(yi)(yi)有可(ke)能獲(huo)得強塑性良好(hao)的(de)(de)(de)綜合(he)(he)力學性能。

t7.jpg

2.3.2 增材制(zhi)造 IN 625 合金(jin)的熱處理

不同于沉淀硬(ying)化型(xing)鎳基高(gao)溫(wen)(wen)合(he)金,對固(gu)溶(rong)強化型(xing)鎳基高(gao)溫(wen)(wen)合(he)金而言,增(zeng)材制造(zao)后續(xu)(xu)熱處理(li)(li)的(de)主(zhu)要(yao)目的(de)是消(xiao)除內應力(li)(li)和均勻(yun)化微觀組織。基于 IN 625 合(he)金的(de) TTT 圖[72-73],增(zeng)材制造(zao) IN 625 合(he)金的(de)后續(xu)(xu)熱處理(li)(li)通(tong)常包含 3 種常用工藝規范[73-74]:去應力(li)(li)退(tui)火(Stress-relief Annealing , SR ); 中 溫(wen)(wen) 退(tui) 火 ( Intermediate-temperature Annealing, ITA);高(gao)溫(wen)(wen)固(gu)溶(rong)處理(li)(li)(High-temperature Solution Treatment,ST)。通(tong)常來說,SR(650~870 ℃)可以消(xiao)除材料內部殘余內應力(li)(li),防止試樣變(bian)形,但不會(hui)改變(bian)打印態樣品的(de)柱(zhu)晶結構特征。

然而(er),由于 Nb 和(he) Mo 元素(su)的(de)(de)(de)局部微(wei)觀偏析(xi)[59,73],會引起(qi) LPBF?IN 625 合金(jin)的(de)(de)(de) TTT圖(tu)顯著地向左移動[73],即 δ 相(xiang)(xiang)析(xi)出(chu)的(de)(de)(de)動力學顯著加快(圖(tu) 8),使(shi) LPBF?IN625 合金(jin)中 δ 相(xiang)(xiang)的(de)(de)(de)生長(chang)速度遠(yuan)快于鍛造合金(jin)[59]。ITA(930~1 040 ℃)處理可以溶解大多數的(de)(de)(de) δ 相(xiang)(xiang),形成再結(jie)晶晶粒(li)。再結(jie)晶現象的(de)(de)(de)發生降低了(le)材料(liao)力學性能(neng)的(de)(de)(de)各向異性。ST(1 040~1 200 ℃)處理的(de)(de)(de)高(gao)溫可以溶解增材制(zhi)造過程中析(xi)出(chu)的(de)(de)(de) MC 碳化物(wu)和(he) δ 相(xiang)(xiang),從而(er)方便(bian)通過后續的(de)(de)(de)時(shi)效處理控制(zhi) δ 相(xiang)(xiang)(760 ℃)或碳化物(wu)的(de)(de)(de)再析(xi)出(chu)(980 ℃)。 Inaekyan 等[75]詳細(xi)總結(jie)了(le) LPBF?IN 625 合金(jin)在(zai)各種(zhong)熱處理工藝條(tiao)件下形成的(de)(de)(de)微(wei)觀組(zu)織演化示意(yi)圖(tu)(圖(tu) 9a)。正(zheng)是由于這些微(wei)觀結(jie)構的(de)(de)(de)不同,引起(qi) ST的(de)(de)(de) LPBF?IN 625 合金(jin)在(zai)高(gao)溫下發生動態(tai)應(ying)變時(shi)效,使(shi)其(qi)拉伸斷(duan)裂伸長(chang)率(lv)顯著下降(圖(tu) 9b、c)。

t8.jpg

t9.jpg

2.3.3 增材制(zhi)造鎳基高(gao)溫(wen)合金(jin)的熱等靜(jing)壓處理

熱等(deng)靜壓(ya)(Hot Isostatic Pressing,HIP)技(ji)術[76]以(yi)(yi)惰性(xing)氣體為(wei)載體,在高溫(wen)和(he)高壓(ya)的(de)協同(tong)(tong)作用下(xia),通過(guo)提高材(cai)(cai)料的(de)塑性(xing)變形和(he)原子(zi)擴散能(neng)力,在閉合裂紋/孔隙/未熔合等(deng)缺陷的(de)同(tong)(tong)時(shi)可(ke)以(yi)(yi)使(shi)合金成分(fen)均勻、微觀(guan)組(zu)織穩定。HIP 被越來越多地應用于鎳基高溫(wen)合金增材(cai)(cai)制造后處理過(guo)程[60, 77-87]研究,并(bing)取(qu)得了(le)良好的(de)進展。

在(zai)提(ti)升(sheng)增(zeng)(zeng)(zeng)材(cai)制造鎳(nie)基(ji)高溫(wen)合金(jin)致密度(du)方(fang)面(mian),HIP處(chu)(chu)理(li)比(bi)(bi)傳統熱(re)處(chu)(chu)理(li)呈(cheng)現(xian)出更大(da)的(de)優勢(shi)[77, 84-85]:去應力熱(re)處(chu)(chu)理(li)使樣(yang)品(pin)整(zheng)體(ti)孔(kong)隙體(ti)積(ji)比(bi)(bi)降低,但會導致樣(yang)品(pin)表(biao)面(mian)較大(da)孔(kong)的(de)數量增(zeng)(zeng)(zeng)加[84],而 HIP 處(chu)(chu)理(li)可(ke)以同(tong)時(shi)使內(nei)部(bu)和表(biao)面(mian)缺(que)陷顯(xian)著減少,使增(zeng)(zeng)(zeng)材(cai)制造材(cai)料的(de)相(xiang)對(dui)(dui)密度(du)由99.50%提(ti)高到 99.90%[78]。在(zai)改善增(zeng)(zeng)(zeng)材(cai)制造鎳(nie)基(ji)高溫(wen)合金(jin)微觀組織方(fang)面(mian),HIP 處(chu)(chu)理(li)也(ye)表(biao)現(xian)出積(ji)極(ji)的(de)影響。Xu 等[60]對(dui)(dui)比(bi)(bi)研(yan)究了 HIP(1 150 ℃,4 h,1 500 bar)、HT(970 ℃,1 h,然后(hou) 718 ℃,8 h + 621 ℃,8 h)、HIP + HT 3 種后(hou)處(chu)(chu)理(li)工藝(yi)對(dui)(dui) LPBF?IN 718 合金(jin)微觀組織變化的(de)影響規律,發現(xian) HIP 處(chu)(chu)理(li)促進 Laves 相(xiang)全部(bu)溶解的(de)同(tong)時(shi)抑(yi)制了 γ''相(xiang)的(de)長大(da)(圖 10a、b)。Rezaei等[78]的(de)研(yan)究結(jie)果也(ye)表(biao)明,HIP 處(chu)(chu)理(li)會促使一種 γ''/γ'/γ'' 共析出相(xiang)形成(圖 10c),有(you)利于(yu)提(ti)高增(zeng)(zeng)(zeng)材(cai)制造鎳(nie)基(ji)高溫(wen)合金(jin)的(de)強度(du);同(tong)時(shi),經 HIP+HT 處(chu)(chu)理(li)后(hou)樣(yang)品(pin)室溫(wen)條件下(xia)的(de)各向(xiang)異性程度(du)由 11.6%降低至 3.5%。

t10.jpg

總而言之,HIP 作為一(yi)種熱力耦合(he)的后續熱處理技術,在消除/減(jian)少(shao)打(da)印缺陷、調(diao)(diao)控(kong)微(wei)觀組(zu)織方(fang)面展現出了巨大的潛力,但 HIP 在調(diao)(diao)控(kong)微(wei)觀組(zu)織方(fang)面的機理還(huan)不是(shi)十(shi)分清晰,需要進(jin)一(yi)步的深入(ru)研究(jiu)。

3、增材制造鎳基高溫合金在航天構件領域的典型應用

3.1 典型構(gou)件案例(li)

增材制(zhi)(zhi)造具(ju)有超出(chu)傳統鑄(zhu)造、鍛造制(zhi)(zhi)備工(gong)藝的成(cheng)形(xing)制(zhi)(zhi)造能力,非常(chang)適合制(zhi)(zhi)備內含(han)復雜內流道、多孔點陣結構等(deng)極難加(jia)工(gong)的結構構件,如(ru)火箭推進器耐高溫(wen)部件、助推器等(deng),對未(wei)來空間探索至關重要(yao),因此受到全世界的關注[4,32-43]。

火箭(jian)(jian)發(fa)動(dong)(dong)機(ji)噴嘴頭是(shi)助(zhu)推(tui)(tui)器(qi)的(de)(de)(de)(de)(de)核心構件(jian)(jian)之(zhi)一(yi)(yi),在(zai)(zai)(zai)傳(chuan)(chuan)統設(she)計中(zhong),該(gai)構件(jian)(jian)由(you) 248 個零(ling)(ling)部(bu)件(jian)(jian)裝配而成,ArianeGroup 利(li)用(yong)增(zeng)(zeng)材(cai)(cai)制(zhi)(zhi)(zhi)造(zao)技(ji)(ji)術將原來的(de)(de)(de)(de)(de) 248 個組件(jian)(jian)合(he)(he)并成一(yi)(yi)個構件(jian)(jian)(圖 11a),克服了(le)(le)(le)傳(chuan)(chuan)統加工工藝(鑄造(zao)、焊接及(ji)鉆(zhan)孔等(deng)眾多(duo)復(fu)雜(za)工藝步驟)耗(hao)時和在(zai)(zai)(zai)極(ji)端負荷(he)環境(jing)中(zhong)存在(zai)(zai)(zai)風險的(de)(de)(de)(de)(de)缺點(dian),真正(zheng)實(shi)現了(le)(le)(le)噴嘴頭一(yi)(yi)體(ti)化設(she)計[38]。DMRL 研究人員(yuan)使(shi)用(yong)增(zeng)(zeng)材(cai)(cai)制(zhi)(zhi)(zhi)造(zao)技(ji)(ji)術制(zhi)(zhi)(zhi)備(bei)了(le)(le)(le)升級版(ban)燃料(liao)噴射器(qi)(圖 11b)。該(gai)構件(jian)(jian)采用(yong) 66.4°橫截面設(she)計,升級了(le)(le)(le)零(ling)(ling)件(jian)(jian)的(de)(de)(de)(de)(de)流道,移除了(le)(le)(le)低應力(li)區域(yu)材(cai)(cai)料(liao),在(zai)(zai)(zai)零(ling)(ling)件(jian)(jian)底(di)部(bu)引入了(le)(le)(le)超(chao)輕(qing)網(wang)格結(jie)(jie)構增(zeng)(zeng)材(cai)(cai)制(zhi)(zhi)(zhi)造(zao)構件(jian)(jian), 其(qi)抗(kang)壓、抗(kang)拉及(ji)硬度的(de)(de)(de)(de)(de)測試結(jie)(jie)果優于傳(chuan)(chuan)統制(zhi)(zhi)(zhi)造(zao)的(de)(de)(de)(de)(de) IN718 構件(jian)(jian),展示(shi)出(chu)(chu)(chu)增(zeng)(zeng)材(cai)(cai)制(zhi)(zhi)(zhi)造(zao)技(ji)(ji)術在(zai)(zai)(zai)導彈終端的(de)(de)(de)(de)(de)應用(yong)潛力(li)[39]。MSFC 利(li)用(yong) DLMD 技(ji)(ji)術成功制(zhi)(zhi)(zhi)備(bei)了(le)(le)(le) IN 625 合(he)(he)金的(de)(de)(de)(de)(de)整體(ti)推(tui)(tui)力(li)室(shi)(圖 11c),該(gai)推(tui)(tui)力(li)室(shi)內(nei)部(bu)形成了(le)(le)(le)完(wan)(wan)整的(de)(de)(de)(de)(de)通(tong)(tong)道結(jie)(jie)構,可(ke)用(yong)于腔(qiang)室(shi)的(de)(de)(de)(de)(de)通(tong)(tong)道冷卻噴嘴部(bu)分(fen)。在(zai)(zai)(zai)主測試階段(duan),噴嘴的(de)(de)(de)(de)(de)壁溫超(chao)過(guo) 732 ℃,證(zheng)明 DLMD 技(ji)(ji)術制(zhi)(zhi)(zhi)備(bei)整體(ti)推(tui)(tui)力(li)室(shi)的(de)(de)(de)(de)(de)可(ke)行性[40]。換(huan)熱器(qi)是(shi)航天設(she)備(bei)長(chang)效穩定(ding)運行的(de)(de)(de)(de)(de)關(guan)鍵部(bu)件(jian)(jian),AddUp、Sogeclair 和 Temisth合(he)(he)作(zuo),通(tong)(tong)過(guo)增(zeng)(zeng)材(cai)(cai)制(zhi)(zhi)(zhi)造(zao)技(ji)(ji)術成功制(zhi)(zhi)(zhi)備(bei)出(chu)(chu)(chu)薄壁(<0.5 mm)沒有(you)泄(xie)漏(lou)且存在(zai)(zai)(zai)大量(liang)薄鰭片(0.15 mm)的(de)(de)(de)(de)(de) IN 718 合(he)(he)金換(huan)熱器(qi)(圖 11d)。該(gai)換(huan)熱器(qi)可(ke)確(que)保對(dui)熱量(liang)的(de)(de)(de)(de)(de)要求,能獲得與(yu)增(zeng)(zeng)材(cai)(cai)制(zhi)(zhi)(zhi)造(zao)鋁制(zhi)(zhi)(zhi)外殼(ke)相似的(de)(de)(de)(de)(de)質(zhi)量(liang)和性能,完(wan)(wan)美地體(ti)現了(le)(le)(le)增(zeng)(zeng)材(cai)(cai)制(zhi)(zhi)(zhi)造(zao)技(ji)(ji)術在(zai)(zai)(zai)制(zhi)(zhi)(zhi)備(bei)復(fu)雜(za)、精密部(bu)件(jian)(jian)領域(yu)的(de)(de)(de)(de)(de)技(ji)(ji)術優勢[41]。EOS 與(yu) Hyperganic 合(he)(he)作(zuo),通(tong)(tong)過(guo)計算機(ji)算法和人工智能創建了(le)(le)(le)一(yi)(yi)件(jian)(jian)結(jie)(jie)構極(ji)其(qi)復(fu)雜(za)的(de)(de)(de)(de)(de) Aerospike火箭(jian)(jian)發(fa)動(dong)(dong)機(ji)模型(xing)。EOS 采用(yong)增(zeng)(zeng)材(cai)(cai)制(zhi)(zhi)(zhi)造(zao)技(ji)(ji)術將其(qi)成功制(zhi)(zhi)(zhi)備(bei)出(chu)(chu)(chu)來,該(gai)發(fa)動(dong)(dong)機(ji)高達(da) 80 cm(圖 11e),其(qi)長(chang)度只(zhi)有(you)常規鐘(zhong)型(xing)火箭(jian)(jian)發(fa)動(dong)(dong)機(ji)的(de)(de)(de)(de)(de) 1/4,質(zhi)量(liang)只(zhi)有(you)航天飛機(ji)主發(fa)動(dong)(dong)機(ji)的(de)(de)(de)(de)(de) 2/3,與(yu)喇叭形噴嘴相比,這種獨(du)特結(jie)(jie)構使(shi)發(fa)動(dong)(dong)機(ji)效率(lv)提高了(le)(le)(le) 15%。增(zeng)(zeng)材(cai)(cai)制(zhi)(zhi)(zhi)造(zao)技(ji)(ji)術自由(you)制(zhi)(zhi)(zhi)造(zao)的(de)(de)(de)(de)(de)特點(dian)為該(gai)新(xin)型(xing)火箭(jian)(jian)發(fa)動(dong)(dong)機(ji)的(de)(de)(de)(de)(de)研制(zhi)(zhi)(zhi)掀(xian)起了(le)(le)(le)新(xin)的(de)(de)(de)(de)(de)熱潮,是(shi)火箭(jian)(jian)推(tui)(tui)進領域(yu)的(de)(de)(de)(de)(de)巨(ju)大進步[42]。

t11.jpg

3.2 增材(cai)制(zhi)造技(ji)術的應(ying)用

上述案(an)例(li)均(jun)極好地展示(shi)了增(zeng)材(cai)(cai)制(zhi)造(zao)(zao)技術(shu)作為一體化成(cheng)形(xing)方法的(de)(de)巨大優勢。然(ran)而,在(zai)制(zhi)備(bei)構(gou)件過程(cheng)中,除考(kao)慮(lv)材(cai)(cai)料可用性、制(zhi)備(bei)質量、成(cheng)本外,還需考(kao)慮(lv)生產工(gong)(gong)藝可能構(gou)建的(de)(de)構(gou)件尺(chi)寸(cun)(cun)(cun)(cun)及特征(zheng)分(fen)辨(bian)率。根據(ju)粉末輸送方式的(de)(de)不同(tong),商用金屬增(zeng)材(cai)(cai)制(zhi)造(zao)(zao)設(she)備(bei)可分(fen)為 2 類(lei)[13]:基于(yu)鋪粉的(de)(de) LPBF 技術(shu)和基于(yu)同(tong)步送粉/絲的(de)(de) DLMD技術(shu)。前者(zhe)成(cheng)形(xing)精度高(gao)但零件加(jia)工(gong)(gong)尺(chi)寸(cun)(cun)(cun)(cun)受限;后(hou)者(zhe)則(ze)不受尺(chi)寸(cun)(cun)(cun)(cun)限制(zhi)但成(cheng)形(xing)精度略低,后(hou)期需要進行加(jia)工(gong)(gong)以滿足使用需求(qiu)。Kerstens 等(deng)[7]根據(ju)歐洲(zhou)和美國增(zeng)材(cai)(cai)制(zhi)造(zao)(zao)機器供(gong)應商的(de)(de)制(zhi)造(zao)(zao)體積,總結(jie)了 3 種常用增(zeng)材(cai)(cai)制(zhi)造(zao)(zao)機器的(de)(de)尺(chi)寸(cun)(cun)(cun)(cun)限制(zhi)及特征(zheng)尺(chi)寸(cun)(cun)(cun)(cun)范(fan)圍,見(jian)圖(tu) 12。據(ju)此,可根據(ju)所生產構(gou)件的(de)(de)尺(chi)寸(cun)(cun)(cun)(cun)和精度要求(qiu)選擇合適的(de)(de)增(zeng)材(cai)(cai)制(zhi)造(zao)(zao)技術(shu)。

t12.jpg

4、 結論

鎳(nie)基(ji)高(gao)溫合(he)金是航天工(gong)業(ye)中不(bu)可或缺的(de)(de)(de)(de)材(cai)料,隨著金屬增材(cai)制(zhi)造理(li)論研(yan)究(jiu)的(de)(de)(de)(de)深入,增材(cai)制(zhi)造技(ji)(ji)術(shu)將進(jin)(jin)一步擴(kuo)大(da)(da)和加快鎳(nie)基(ji)高(gao)溫合(he)金在航天領域的(de)(de)(de)(de)應用(yong)。然(ran)而,增材(cai)制(zhi)造技(ji)(ji)術(shu)涉及極為復雜(za)的(de)(de)(de)(de)冶(ye)金、物理(li)、化學、熱(re)(re)耦(ou)合(he)等過程,盡管在航天器(qi)構(gou)件制(zhi)備方面有很多成功的(de)(de)(de)(de)案例,且針對(dui)鎳(nie)基(ji)高(gao)溫合(he)金的(de)(de)(de)(de)增材(cai)制(zhi)造也(ye)進(jin)(jin)行(xing)了大(da)(da)量的(de)(de)(de)(de)研(yan)究(jiu),但(dan)“材(cai)料–增材(cai)制(zhi)造工(gong)藝–后(hou)(hou)續熱(re)(re)處理(li)–組織–性能”之間的(de)(de)(de)(de)匹(pi)配關系仍(reng)不(bu)是十分清晰。在今后(hou)(hou)的(de)(de)(de)(de)研(yan)究(jiu)中,以(yi)下(xia)幾個方面仍(reng)值得(de)進(jin)(jin)一步關注(zhu)。

1)鎳(nie)基(ji)高(gao)溫合金成(cheng)分(fen)十分(fen)復雜,且對增材(cai)制造工藝(yi)參(can)數極(ji)為敏感,厘清關(guan)鍵合金元(yuan)素(su)與(yu)增材(cai)制造缺(que)陷的(de)關(guan)聯關(guan)系對制備零缺(que)陷材(cai)料至(zhi)關(guan)重(zhong)要。

2)微(wei)觀(guan)偏析(xi)是增材(cai)制(zhi)造鎳基(ji)高溫合金(jin)中(zhong)普遍存在(zai)的(de)現(xian)象(xiang)(xiang),往(wang)往(wang)給材(cai)料的(de)微(wei)觀(guan)組織(zhi)和(he)力學(xue)性能帶(dai)來不利的(de)影響。通(tong)過優化合金(jin)成(cheng)分和(he)增材(cai)制(zhi)造工藝參數來減(jian)輕或消除(chu)微(wei)觀(guan)偏析(xi)現(xian)象(xiang)(xiang)是一個重(zhong)要的(de)關注點(dian)。

3)增(zeng)(zeng)(zeng)材(cai)(cai)制造鎳(nie)基(ji)高(gao)溫(wen)合(he)金(jin)材(cai)(cai)料獨(du)(du)特的(de)(de)(de)微(wei)觀組織給增(zeng)(zeng)(zeng)材(cai)(cai)制造后(hou)續(xu)熱(re)處理(li)(li)(li)(li)工(gong)藝(yi)(yi)(yi)選擇(ze)帶來一定的(de)(de)(de)挑戰性(xing):用于(yu)鑄造或(huo)(huo)鍛造鎳(nie)基(ji)高(gao)溫(wen)合(he)金(jin)的(de)(de)(de)常規熱(re)處理(li)(li)(li)(li)工(gong)藝(yi)(yi)(yi)將不再是最(zui)優(you)的(de)(de)(de)工(gong)藝(yi)(yi)(yi)規范。開發新的(de)(de)(de)熱(re)處理(li)(li)(li)(li)工(gong)藝(yi)(yi)(yi),通過對微(wei)觀組織的(de)(de)(de)調(diao)控,獲得高(gao)強韌(ren)增(zeng)(zeng)(zeng)材(cai)(cai)制造鎳(nie)基(ji)高(gao)溫(wen)合(he)金(jin)是一個艱巨的(de)(de)(de)任務。同時(shi),具有(you)(you)熱(re)–機(ji)械協同效應的(de)(de)(de)熱(re)等靜壓技術單獨(du)(du)或(huo)(huo)與其他熱(re)處理(li)(li)(li)(li)工(gong)藝(yi)(yi)(yi)相結合(he),在消除(chu)冶(ye)金(jin)缺陷和調(diao)控微(wei)觀組織方面均具有(you)(you)積極的(de)(de)(de)效果,有(you)(you)望成(cheng)為提高(gao)增(zeng)(zeng)(zeng)材(cai)(cai)制造構(gou)件性(xing)能的(de)(de)(de)非(fei)常有(you)(you)前景的(de)(de)(de)選擇(ze)。

4)室溫和高(gao)(gao)(gao)溫強(qiang)度、疲勞、蠕變、腐蝕及抗氧化(hua)性能均是鎳基(ji)高(gao)(gao)(gao)溫合金服役的重要(yao)指標。目前的研究(jiu)大多(duo)集中在室溫和高(gao)(gao)(gao)溫強(qiang)度方面,應進(jin)一步加強(qiang)對增(zeng)材制造鎳基(ji)高(gao)(gao)(gao)溫合金其他性能的評價。

5)鎳基(ji)高(gao)溫合金增材(cai)制(zhi)(zhi)(zhi)造構(gou)(gou)件的(de)(de)研制(zhi)(zhi)(zhi)是(shi)一個復雜的(de)(de)系(xi)統工程,涉及(ji)材(cai)料(liao)、粉體制(zhi)(zhi)(zhi)備、增材(cai)制(zhi)(zhi)(zhi)造技術、構(gou)(gou)件設計、制(zhi)(zhi)(zhi)造標準(zhun)等,需進(jin)行全面系(xi)統的(de)(de)研究,以滿(man)足未來航天領域快(kuai)速發展的(de)(de)挑戰。

參考文獻:

[1]潘(pan)堅, 王家勝. 航天專用材料(liao)發(fa)展趨勢(shi)[J]. 中國航天,2002(9): 41-45.

PAN Jian, WANG Jia-sheng. Development Trend of Aerospace Special Materials[J]. Aerospace China,2002(9): 41-45.

[2]邱惠中(zhong), 吳志紅. 國外航天(tian)材料的新進展[J]. 宇航材料工藝, 1997, 27(4): 5-13.

QIU Hui-zhong, WU Zhi-hong. Development of Aero-space Materials Abroad[J]. Aerospace Materials &Technology, 1997, 27(4): 5-13.

[3]王娜, 李(li)海慶, 徐方濤, 等. 雙(shuang)組元液體火箭(jian)發動(dong)機推力室(shi)材料(liao)研(yan)究進展[J]. 宇航材料(liao)工(gong)藝(yi), 2019, 49(3): 1-8.

WANG Na, LI Hai-qing, XU Fang-tao, et al. Recent Development of Advanced Materials for Liquid Rocket Thruster Chambers[J]. Aerospace Materials & Tech- nology, 2019, 49(3): 1-8.

[4]張武昆, 譚(tan)永華(hua), 高玉閃, 等. 液體(ti)火箭發(fa)動機(ji)增材制(zhi)造技術研究(jiu)進展(zhan)[J]. 推進技術, 2022, 43(5): 29-44.

ZHANG Wu-kun, TAN Yong-hua, GAO Yu-shan, et al.Research Progress of Additive Manufacturing Technol-ogy in Liquid Rocket Engine[J]. Journal of Propulsion Technology, 2022, 43(5): 29-44.

[5]章本立(li). 國外(wai)液(ye)體(ti)火箭發動(dong)機(ji)渦輪(lun)高溫材(cai)料(liao)的現(xian)狀和發展[J]. 國外(wai)導彈技術, 1983(2): 36-50.

ZHANG Ben-li. Present Situation and Development of High Temperature Materials for Liquid Rocket Engine Turbine Abroad[J]. Missiles and Space Vehicles, 1983 (2): 36-50.

[6]韓鴻(hong)碩. 國外(wai)航天器防熱系統和材(cai)料的應用研究現(xian)狀[J]. 宇航材(cai)料工藝, 1994, 24(6): 1-4, 12.

HAN Hong-shuo. Application and Research Status of Spacecraft Thermal Protection Systems and Materials Abroad[J]. Aerospace Materials & Technology, 1994, 24(6): 1-4, 12.

[7]KERSTENS F. End to End Process Evaluation for Addi-tively Manufactured Liquid Rocket Engine Thrust Chambers[J]. Acta Astronautica, 2021, 182: 454-465.

[8]HERZOG D, SEYDA V, WYCISK E, et al. Additive Manufacturing of Metals[J]. Acta Materialia, 2016, 117:371-392.

[9]PANWISAWAS C, TANG Y T, REED R C. Metal 3D Printing as a Disruptive Technology for Superalloys[J].Nature Communications, 2020, 11(1): 2327.

[10] ORME M E, GSCHWEITL M, FERRARI M, et al. Ad-ditive Manufacturing of Lightweight, Optimized, Metal-lic Components Suitable for Space Flight[J]. Journal of Spacecraft and Rockets, 2017, 54(5): 1050-1059.

[11] TAN Chao-lin, WENG Fei, SUI Shang, et al. Progress and Perspectives in Laser Additive Manufacturing of Key Aeroengine Materials[J]. International Journal of Machine Tools and Manufacture, 2021, 170: 103804.

[12] SNYDER J C, THOLE K A. Effect of Additive Manu-facturing Process Parameters on Turbine Cooling[J].Journal of Turbomachinery, 2020, 142(5): 051007.

[13] BLAKEY-MILNER B, GRADL P, SNEDDEN G, et al.Metal Additive Manufacturing in Aerospace: A Re-view[J]. Materials & Design, 2021, 209: 110008.

[14] 辛(xin)艷(yan)喜(xi), 蔡高(gao)參, 胡彪, 等. 3D 打(da)印主(zhu)要成(cheng)形工藝(yi)及(ji)其應用進展(zhan)[J]. 精密(mi)成(cheng)形工程(cheng), 2021, 13(6): 156-164.

XIN Yan-xi, CAI Gao-shen, HU Biao, et al. Recent De-velopment of Main Process Types of 3D Printing Tech-nology and Application[J]. Journal of Netshape Forming Engineering, 2021, 13(6): 156-164.

[15] 湯海波(bo), 吳宇(yu), 張述泉, 等. 高性能大型(xing)金屬構(gou)件激(ji)光(guang)增材制造技術研究現狀(zhuang)與發展(zhan)趨勢[J]. 精密成形(xing)工程, 2019, 11(4): 58-63.

TANG Hai-bo, WU Yu, ZHANG Shu-quan, et al. Re-search Status and Development Trend of High Per-formance Large Metallic Components by Laser Additive Manufacturing Technique[J]. Journal of NetshapeForming Engineering, 2019, 11(4): 58-63.

[16] 《中(zhong)國航空材(cai)料手(shou)冊(ce)》編(bian)輯委員會(hui). 中(zhong)國航空材(cai)料手(shou)冊(ce)[M]. 第 2 版. 北京:中(zhong)國標準出版社, 2002.

China Aviation Materials Manual Editorial Committee.China Aeronautical Materials Handbook [M]. 2nd edi-tion. Beijing: Standards Press of China, 2002.

[17] 張軍, 介子奇, 黃太文(wen), 等(deng). 鎳基(ji)鑄造高溫合金等(deng)軸晶凝(ning)固成形技(ji)術的研究和進展[J]. 金屬學報, 2019,55(9): 1145-1159.

ZHANG Jun, JIE Zi-qi, HUANG Tai-wen, et al. Re-search and Development of Equiaxed Grain Solidifica-tion and Forming Technology for Nickel-Based Cast Superalloys[J]. Acta Metallurgica Sinica, 2019, 55(9):1145-1159.

[18] 郭(guo)建亭. 變形高(gao)溫合(he)金(jin)和等軸晶鑄造高(gao)溫合(he)金(jin)材(cai)料與(yu)應 用(yong) 基 礎 理 論 研(yan) 究(jiu) [J]. 金(jin) 屬 學 報 , 2010, 46(11):1303-1321.

GUO Jian-ting. Review on Whrought Superalloy andEqui-Axed Crystal Cast Superalloy Materials and Their Application Basic Theories[J]. Acta Metallurgica Sinica, 2010, 46(11): 1303-1321.

[19] 黃(huang)朝暉, 譚永寧(ning), 賈(jia)新云, 等. 第二代定向凝固柱晶高(gao)溫合金(jin) DZ406(DZ6)[C]//動力與能源用(yong)高(gao)溫結構材料——第十一(yi)屆中國高(gao)溫合金(jin)年會論文集(ji). 北京,2007: 394-398.

HUANG Zhao-hui, TAN Yong-ning, JIA Xin-yun, et al.The Second Generation Directionally Solidified Super-alloy DZ406 (DZ6)[C]// High-Temperature Structural Materials for Power and Energy: Proceedings of the 11th Annual Chinese Superalloy Conference. Beijing,2007: 394-398.

[20] 王博(bo). 第三代(dai)鎳基單晶(jing)高(gao)溫合金(jin)成分設計(ji)及組(zu)織穩定(ding)性(xing)研究[D]. 西(xi)(xi)安: 西(xi)(xi)北工(gong)業大學, 2018.

WANG Bo. Alloy Design and Microstructure Stability ofThird Generation Ni-Based Single Crystal Superalloys[D].Xi'an: Northwestern Polytechnical University, 2018.

[21] 孫寶德, 王俊, 疏達, 等. 航空發動(dong)機高溫合金(jin)大型鑄件精(jing)密成型技術[M]. 上海: 上海交通大學出(chu)版社, 2016.

SUN Bao-de, WANG Jun, SHU Da. Precision Forming Technology of Large Superalloy Castings for Aircraft Engine[M]. Shanghai: Shanghai Jiao Tong University    Press, 2016.

[22] 干夢迪, 種曉(xiao)宇, 馮(feng)晶. 航(hang)空航(hang)天高(gao)溫(wen)結構材料研究現 狀 及 展 望(wang)[J]. 昆 明 理 工 大 學 學 報(自(zi) 然 科 學 版),2021, 46(6): 24-36.

GAN Meng-di, CHONG Xiao-yu, FENG Jing. Research Status and Prospects of Aerospace High-Temperature Structural Materials[J]. Journal of Kunming University of Science and Technology (Natural Sciences), 2021,46(6): 24-36.

[23] 齊歡. INCONEL 718(GH4169)高溫合金的發展與工藝[J]. 材料工程, 2012, 40(8): 92-100.

QI Huan. Review of INCONEL 718 Alloy: Its History,Properties, Processing and Developing Substitutes[J].Journal of Materials Engineering, 2012, 40(8): 92-100.

[24] 張(zhang)鵬, 楊凱, 朱強(qiang), 等. 微(wei)量(liang)元素對鎳基高溫合(he)金(jin)微(wei)觀(guan)組織(zhi)與力學性能的影響(xiang)[J]. 精密成(cheng)形工程, 2018,10(2): 1-6.

ZHANG Peng, YANG Kai, ZHU Qiang, et al. Effect of Microelement on Microstructure and Mechanical Prop-erty of Nickel-Base Superalloy[J]. Journal of Netshape Forming Engineering, 2018, 10(2): 1-6.

[25] 張龍飛, 江(jiang)亮, 周(zhou)科朝, 等. 航空發動機用單晶高溫合金成分設計研究進展[J]. 中國(guo)有色金屬學報, 2022,32(3): 630-644.

ZHANG Long-fei, JIANG Liang, ZHOU Ke-chao, et al.Research Progress of Compositional Design in Nickel-Based Single Crystal Superalloys for Aero-Engine Ap- plications[J]. The Chinese Journal of Nonferrous Metals,2022, 32(3): 630-644.

[26] 黃進峰(feng), 余紅燕, 李永(yong)兵, 等. 富氧氣氛下高溫合金氧化特征及機理[J]. 鋼(gang)鐵研究學(xue)報, 2009, 21(3): 51-54.

HUANG Jin-feng, YU Hong-yan, LI Yong-bing, et al.Oxidation Characteristic and Mechanism of Superalloysin Oxygen-Enriched Atmosphere[J]. Journal of Iron and Steel Research, 2009, 21(3): 51-54.

[27] 張冬云, 高陽, 曹明, 等(deng). SLM 成形 Inconel 718 合金(jin)的組織性能(neng)調控研究[J]. 上(shang)海(hai)航(hang)天(中英文), 2020,37(3): 82-88.

ZHANG Dong-yun, GAO Yang, CAO Ming, et al. Studyon Regulation of Microstructure and Mechanical Prop-erties of SLM-Processed Inconel 718 Alloy[J]. AerospaceShanghai (Chinese & English), 2020, 37(3): 82-88.

[28] 滕慶, 李帥, 薛鵬(peng)舉, 等. 激光(guang)選區(qu)熔化 Inconel 718合 金(jin) 高 溫 腐 蝕 性 能 [J]. 中(zhong) 國 有 色 金(jin) 屬 學 報 , 2019,29(7): 1417-1426.

TENG Qing, LI Shuai, XUE Peng-ju, et al. High-Tem-perature Corrosion Resistance of Inconel 718 Fabricated by Selective Laser Melting[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(7): 1417-1426.

[29] 劉俊(jun), 邱鑫, 段德莉. 新(xin)型加熱(re)器在運載火箭(jian)綠色(se)單元發動機上的(de)應用(yong)[J]. 上海航(hang)天, 2020, 37(1): 113-118,124.

LIU Jun, QIU Xin, DUAN De-li. Application of New Type Heaters in the Green Monopropellant Thruster of Launch Vehicle[J]. Aerospace Shanghai (Chinese &     English), 2020, 37(1): 113-118, 124.

[30] 邢春(chun)鵬(peng). 金屬蜂窩夾芯結(jie)(jie)構性能研究與多層隔(ge)熱結(jie)(jie)構優化設計[D]. 哈(ha)爾(er)濱(bin)(bin): 哈(ha)爾(er)濱(bin)(bin)工業大學, 2008.

XING Chun-peng. Research on Properties of Metallic Honeycomb Structure and Optimization of Multilayer Insulations[D]. Harbin: Harbin Institute of Technology, 2008.

[31] DORSEY J, POTEET C, CHEN R, et al. Metallic ther-mal protection system technology development - Con-cepts, requirements and assessment overview[C]//40thAIAA Aerospace Sciences Meeting & Exhibit. Reno,NV. Reston, Virginia: AIAA, 2002: 502.

[32] 孫(sun)曉峰, 宋(song)巍(wei), 梁靜(jing)靜(jing), 等(deng). 激光(guang)增材(cai)制(zhi)造高溫合金材(cai)料與工藝研(yan)究(jiu)進展[J]. 金屬學報, 2021, 57(11):1471-1483.

SUN Xiao-feng, SONG Wei, LIANG Jing-jing, et al.Research and Development in Materials and Processes of Superalloy Fabricated by Laser Additive Manufacturing[J].Acta Metallurgica Sinica, 2021, 57(11): 1471-1483.

[33] 張紅梅(mei), 顧冬冬. 激光增材制(zhi)造鎳基(ji)高溫(wen)合(he)金構件形性(xing)調控及在航空航天中(zhong)的應用[J]. 電加工(gong)與模具,2020(6): 1-10.

ZHANG Hong-mei, GU Dong-dong. Laser Additive Manufacturing of Nickel-Based Superalloys and Its Structure-Performance Control and Aerospace Applica- tions[J]. Electromachining & Mould, 2020(6): 1-10.

[34] GRADL P R, PROTZ C S, WAMMEN T. Additive Manufacturing and Hot-Fire Testing of Liquid Rocket Channel Wall Nozzles Using Blown Powder Directed Energy Deposition Inconel 625 and JBK-75 Al-loys[C]//AIAA Propulsion and Energy 2019 Forum. In-dianapolis, IN. Reston, Virginia: AIAA, 2019.

[35] OERLIKON. Case Study LENA Space Rocket Nozzle [EB/OL]. //www.oerlikon.com /ecomaXL/files/en/ oerlikon_Oerlikon_Aerospace_Case_study_LENA_Ro- cket_Nozzle_EN.PDF&download=0.

[36] DONATH S. Case Study: Additive Manufacturing, 3D Printing A Rocket Engine[EB/OL]. //www.etmm-online.com/3d-printing-a-rocket-engine-a-886960/.

[37] MOLITCH-HOU M. GKN Launches into Aerospace 3D Printing[EB/OL]. //www. engineering.com/story/gkn-launches-into-aerospace-3d-printing.

[38] EOS. All-in-one Design122 Injection Nozzles and Fur-ther Parts as One Integrated Component[EB/OL]. //www.eos.info/en/all-3d-printing-applications/aerospace-additive-manufacturering-for-ariane-injection-nozzles.

[39] KUMAR S R, SRINIVAS V, REDDY G J, et al. 3DPrinting of Fuel Injector in IN718 Alloy for Missile Ap-plications[J]. Transactions of the Indian National Academy of Engineering, 2021, 6(4): 1099-1109.

[40] GRADL P R, BRANDSMEIER W, GREENE S E.Channel Wall Nozzle Manufacturing and Hot-Fire Test-ing Using A Laser Wire Direct Closeout Technique for Liquid Rocket Engines[C]// 54th AIAA/SAE/ASEEJoint Propulsion Conference, 2018.

[41] 3DScienceValley. Heat Exchanger With Additive Manu-facturing[EB/OL]. //en.51shap e.com/?p=1751.

[42] CHRONIC AM. EOS and Hyperganic Team Up to Ele-vate The Design and Performance of Space Propulsion Components[EB/OL]. //www.amchronicle.com/news/eos-and-hyperganic-team-up-to-elevate-the-design-and-performance-of-space-propulsion-components/.

[43] 閔捷, 溫(wen)東旭, 岳天宇, 等. 增(zeng)材制造技術在高溫(wen)合金 零(ling) 部 件 成 形 中 的 應(ying) 用 [J]. 精 密(mi) 成 形 工 程 , 2021,13(1): 44-50.

MIN Jie, WEN Dong-xu, YUE Tian-yu, et al. Applica-tion of Additive Manufacturing Technology in Forming of Superalloy Component[J]. Journal of Netshape Forming Engineering, 2021, 13(1): 44-50.

[44] 吳(wu)楷, 張敬霖, 吳(wu)濱, 等. 激(ji)光增材制造鎳基(ji)高溫(wen)合金研(yan)究(jiu)進展[J]. 鋼鐵(tie)研(yan)究(jiu)學報(bao), 2017, 29(12): 953-959.

WU Kai, ZHANG Jing-lin, WU Bin, et al. Research and Development of Ni-Based Superalloy Fabricated by Laser Additive Manufacturing Technology[J]. Journal of Iron and Steel Research, 2017, 29(12): 953-959.

[45] SANCHEZ S, SMITH P, XU Z K, et al. Powder Bed Fusion of Nickel-Based Superalloys: A Review[J]. In-ternational Journal of Machine Tools and Manufacture, 2021, 165: 103729.

[46] Special Metals Corporation: INCONEL@ Alloy 718,2007[EB/OL]. //www. specialmetals.com/docu-ments/technical-bulletins/inconel/inconel-alloy-718.pdf.

[47] Special Metals Corporation: INCONEL@ Alloy 625,2013[EB/OL]. //www. specialmetals.com/docu-ments/technical-bulletins/inconel/inconel-alloy-625.pdf.

[48] ZHONG Chong-liang. Study of Nickel-Based Super-Alloys Inconel 718 and Inconel 625 in High-Deposition-Rate Laser Metal Deposition[J]. Optics & Laser Tech- nology, 2019, 109: 352-360.

[49] WANG H. Selective Laser Melting of the Hard-to-Weld IN738LC Superalloy: Efforts to Mitigate Defects and the Resultant Microstructural and Mechanical Proper-ties[J]. Journal of Alloys and Compounds, 2019, 807:151662.

[50] LIU Zhi-yuan, ZHAO Dan-dan, WANG Pei. Additive Manufacturing of Metals: Microstructure Evolution and Multistage Control[J]. Journal of Materials Science & Technology, 2022, 100: 224-236.

[51] MORADI M. Direct Laser Metal Deposition Additive Manufacturing of Inconel 718 Superalloy: Statistical Modelling and Optimization by Design of Experiments[J].Optics & Laser Technology, 2021, 144: 107380.

[52] DINDA G P, DASGUPTA A K, MAZUMDER J. Laser Aided Direct Metal Deposition of Inconel 625 Superal-loy: Microstructural Evolution and Thermal Stability[J]. Materials Science and Engineering: A, 2009, 509(1/2):98-104.

[53] BENOIT M J, MAZUR M, EASTON M A, et al. Effectof Alloy Composition and Laser Powder Bed Fusion Parameters on the Defect Formation and Mechanical Properties of Inconel 625[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(3):915-927.

[54] 劉 化 強 , 劉 江 偉 , 國 凱(kai) , 等 . 激 光 定 向(xiang) 能 量 沉 積Inconel 718 特征與(yu)工藝(yi)參數優化[J]. 應用激光, 2021,41(1): 13-21.

LIU Hua-qiang, LIU Jiang-wei, GUO Kai, et al. Char-acteristics and Process Parameters Optimization of In-conel 718 Fabricated via Laser Directed Energy Deposi- tion[J]. Applied Laser, 2021, 41(1): 13-21.

[55] 楊浩, 李堯, 郝建(jian)民. 激光增材(cai)制造(zao) Inconel 718 高(gao)溫合金的研究進展[J]. 材(cai)料導報(bao), 2022, 36(6): 129-138.

YANG Hao, LI Yao, HAO Jian-min. Research Progress of Laser Additively Manufactured Inconel 718 Superal-loy[J]. Materials Reports, 2022, 36(6): 129-138.

[56] KURZ W, FISHER D J. Fundamentals of Solidifica-tion[M]. Switzerland: Trans Tech Publications, 1998.

[57] LI Shuai, WEI Qing-song, SHI Yu-sheng, et al. Micro-structure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting[J]. Journal of    Materials Science & Technology, 2015, 31(9): 946-952.

[58] RAMSPERGER M, MúJICA RONCERY L, LOPEZ-GALILEA I, et al. Solution Heat Treatment of the Single Crystal Nickel-Base Superalloy CMSX-4 Fabricated by Selective Electron Beam Melting[J]. Advanced Engi-neering Materials, 2015, 17(10): 1486-1493.

[59] ZHANG Fan, LEVINE L E, ALLEN A J, et al. Effect of Heat Treatment on the Microstructural Evolution of a Nickel-Based Superalloy Additive-Manufactured by  Laser Powder Bed Fusion[J]. Acta Materialia, 2018, 152:200-214.

[60] XU J H, MA T R, PENG R L, et al. Effect of Post-Processes on the Microstructure and Mechanical Properties of Laser Powder Bed Fused IN718 Superal-loy[J]. Additive Manufacturing, 2021, 48: 102416.

[61] XIAO H, LI S M, XIAO W J, et al. Effects of LaserModes on Nb Segregation and Laves Phase Formation during Laser Additive Manufacturing of Nickel-Based Superalloy[J]. Materials Letters, 2017, 188: 260-262.

[62] XIAO Hui, LI Si-meng, HAN Xu, et al. Laves Phase Control of Inconel 718 Alloy Using Quasi-Continuous-Wave Laser Additive Manufacturing[J]. Materials & Design, 2017, 122: 330-339.

[63] YANG Hui-hui, MENG Liang, LUO Shun-cun, et al.Microstructural Evolution and Mechanical Perform-ances of Selective Laser Melting Inconel 718 from Low to High Laser Power[J]. Journal of Alloys and Com-pounds, 2020, 828: 154473.

[64] ZHANG Yao-cheng, YANG Li, LU Wang-zhang, et al.Microstructure and Elevated Temperature Mechanical Properties of IN718 Alloy Fabricated by Laser Metal Deposition[J]. Materials Science and Engineering: A,2020, 771: 138580.

[65] BROOKS J W, BRIDGES P J. Metallurgical Stability of Inconel Alloy 718[C]//Superalloys 1988 (Sixth Interna-tional Symposium). TMS, 1988: 33-42.

[66] QI H, AZER M, RITTER A. Studies of Standard Heat Treatment Effects on Microstructure and Mechanical Properties of Laser Net Shape Manufactured INCONEL 718[J]. Metallurgical and Materials Transactions A,2009, 40(10): 2410-2422.

[67] HUANG Liang, CAO Yan, ZHANG Jia-hao, et al. Effect of Heat Treatment on the Microstructure Evolution and Mechanical Behaviour of a Selective Laser Melted In-conel 718 Alloy[J]. Journal of Alloys and Compounds,2021, 865: 158613.

[68] ZHANG Yao-cheng, LI Zhu-guo, NIE Pu-lin, et al. Ef-fect of Heat Treatment on Niobium Segregation of La-ser-Cladded IN718 Alloy Coating[J]. Metallurgical andMaterials Transactions A, 2013, 44(2): 708-716.

[69] TUCHO W M, HANSEN V. Characterization of SLM-Fabricated Inconel 718 after Solid Solution and Precipitation Hardening Heat Treatments[J]. Journal of Materials Science, 2019, 54(1): 823-839.

[70] 張杰, 張群(qun)莉, 陳智君, 等. 固溶溫(wen)度對激光增(zeng)材(cai)制造 Inconel 718 合金組織和性(xing)能的影(ying)響[J]. 表面技(ji)術(shu),2019, 48(2): 47-53.

ZHANG Jie, ZHANG Qun-li, CHEN Zhi-jun, et al. Ef-fects of Solution Temperature on Microstructure and Properties of Inconel 718 Alloy Fabricatedvia Laser Additive Manufacturing[J]. Surface Technology, 2019,48(2): 47-53.

[71] LI X, SHI J J, CAO G H,et al. Improved Plasticity of Inconel 718 Superalloy Fabricated by Selective Laser Melting through a Novel Heat Treatment Process[J]. Materials & Design, 2019, 180: 107915.

[72] STEPHEN F, FUCHS G E, YANG W J. The Metallurgy of Alloy 625[J]. 1994.

[73] FLOREEN S, FUCHS G E, YANG W J. The Metallurgy of Alloy 625[J]. Superalloys, 1994, 718(625): 13-37.

[74] LINDWALL G, CAMPBELL C E, LASS E A, et al. Simulation of TTT Curves for Additively Manufactured Inconel 625[J]. Metallurgical and Materials Transac- tions A, 2019, 50(1): 457-467.

[75] KREITCBERG A, BRAILOVSKI V, TURENNE S.Elevated Temperature Mechanical Behavior of IN625 Alloy Processed by Laser Powder-Bed Fusion[J]. Mate- rials Science and Engineering: A, 2017, 700: 540-553.

[76] INAEKYAN K, KREITCBERG A, TURENNE S, et al.Microstructure and Mechanical Properties of Laser Powder Bed-Fused IN625 Alloy[J]. Materials Science and Engineering: A, 2019, 768: 138481.

[77] 劉(liu)文(wen)彬, 莫仕(shi)棟, 謝月光(guang), 等. 熱(re)等靜壓消除(chu)金屬增材(cai)(cai)制造構(gou)件孔隙的研(yan)究(jiu)進展[J]. 材(cai)(cai)料研(yan)究(jiu)與應(ying)用(yong),2021, 15(3): 287-296.

LIU Wen-bin, MO Shi-dong, XIE Yue-guang, et al. Re-search Progress of Hot Isostatic Pressing to Eliminate the Pores in Metal Parts Prepared by Additive Manu- facturing[J]. Materials Research and Application, 2021,15(3): 287-296.

[78] TILLMANN W, SCHAAK C, NELLESEN J, et al. Hot Isostatic Pressing of IN718 Components Manufactured by Selective Laser Melting[J]. Additive Manufacturing, 2017, 13: 93-102.

[79] REZAEI A, KERMANPUR A, REZAEIAN A, et al.Contribution of Hot Isostatic Pressing on Densification,Microstructure Evolution, and Mechanical Anisotropy of Additively Manufactured IN718 Ni-Based Superal-loy[J]. Materials Science and Engineering: A, 2021, 823:141721.

[80] 羅浩, 李小強, 潘存良, 等. 熱等靜壓處理對選(xuan)區(qu)激光熔化成形 Inconel 718 合金各向組織及力學性能的影(ying)響[J]. 表(biao)面技術, 2022, 51(3): 333-341.

LUO Hao, LI Xiao-qiang, PAN Cun-liang, et al. Effects of Hot Isostatic Pressing on Microstructure and Me-chanical Properties of Selective Laser Melted Inconel 718 Alloy in Different Directions[J]. Surface Technol-ogy, 2022, 51(3): 333-341.

[81] GOEL S, SITTIHO A, CHARIT I, et al. Effect of Post-Treatments under Hot Isostatic Pressure on Micro-structural Characteristics of EBM-Built Alloy 718[J]. Additive Manufacturing, 2019, 28: 727-737.

[82] BASSINI E, SIVO A, MARTELLI P A, et al. Effects ofthe Solution and First Aging Treatment Applied to As-Built and Post-HIP CM247 Produced via Laser Powder Bed Fusion (LPBF)[J]. Journal of Alloys andCompounds, 2022, 905: 164213.

[83] POULIN J R, KREITCBERG A, BRAILOVSKI V. Ef-fect of Hot Isostatic Pressing of Laser Powder Bed Fused Inconel 625 with Purposely Induced Defects on the Residual Porosity and Fatigue Crack PropagationBehavior[J]. Additive Manufacturing, 2021, 47: 102324.

[84] KALETSCH A, QIN S, HERZOG S, et al. Influence of High Initial Porosity Introduced by Laser Powder Bed Fusion on the Fatigue Strength of Inconel 718 after  Post-Processing with Hot Isostatic Pressing[J]. Additive Manufacturing, 2021, 47: 102331.

[85] BABAMIRI B B, INDECK J, GEMENEGHI G, et al.Quantification of Porosity and Microstructure and Their Effect on Quasi-Static and Dynamic Behavior of Addi- tively Manufactured Inconel 718[J]. Additive Manufac-turing, 2020, 34: 101380.

[86] SHAJI KARAPUZHA A, FRASET D, ZHU Y M, et al.Effect of Solution Heat Treatment and Hot Isostatic Pressing on the Microstructure and Mechanical Proper- ties of Hastelloy X Manufactured by Electron Beam Powder Bed Fusion[J]. Journal of Materials Science &Technology, 2022, 98: 99-117.

[87] SHAO Shuai, MAHTABI M J, SHAMSAEI N, et al.Solubility of Argon in Laser Additive Manufactured Α-Titanium under Hot Isostatic Pressing Condition[J]. Computational Materials Science, 2017, 131: 209-219.

[88] DU PLESSIS A, MACDONALD E. Hot Isostatic Pressing in Metal Additive Manufacturing: X-Ray Tomography Reveals Details of Pore Closure[J].Additive Manufacturing, 2020, 34: 101191.

在線客服(fu)
客服電話(hua)

全國免費服務熱線
0917 - 3388692
掃(sao)一掃(sao)

jenota.com.cn
利泰金屬手機網

返回頂部

↑